首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-chamber solid oxide fuel cell is a device where two electrodes of different materials contacting a solid oxide ionic conductor, may generate a considerable potential difference and electrical power, when supplied by a common fuel + oxidant gas mixture. The Au|YSZ|Pt system in the CH4 + O2 gas mixture is one of the simplest examples of such a cell. In this article the open-circuit voltage (OCV) of this cell, supplied with the gas mixture xO2 + aCH4 + (1 − x − a)Ar (where a = 0.01, 0.1 or 0.5), is investigated. On the basis of the obtained results, as well as those for the xCH4 + (1 − x)(0.2O2 + 0.8Ar) (0 ≤ x ≤ 1) gas mixture, reported in our previous work [Electrochim. Acta, 50 (2005) 2771], we postulate that the OCV of the above system arises as a result of electrode modification resulting from solid carbon deposition in the cell. After oxidation of the carbon deposit, the system, once treated by the gas mixture enabling the formation of the carbon phase, shows more and more tendency to generate the OCV. The open-circuit potential of the Au electrode depends only on the O2 concentration in the initial gas mixture, whereas in the case of the Pt electrode it becomes dependent on chemical equilibria determining the O2 content in the converted gas mixture. Our results reveal that the OCV achieves a reproducible limiting value of ∼650 mV, which is lower by ∼400 mV than the calculated equilibrium value.  相似文献   

2.
A double gas concentration cell as combination of the cell with the yttria stabilized zirconia (YSZ) electrolyte and the cell with molten Li2CO3 + Na2CO3 eutectics is proposed as an alternative cell system with a standard reference electrode for measurements of the open-circuit potential (OCP) values of electrodes in oxygen concentration cell with the yttria stabilized zirconia (YSZ) electrolyte. In this double-cell one electrode is common for the two cells and the reference electrode is the standard molten carbonate half-cell with 0.33O2 + 0.67CO2 atmosphere. This reference electrode should enable the monitoring of OCP and overpotential values in polarization studies in the three-electrodes configuration. If the possible reaction between the solid YSZ and liquid molten carbonates electrolyte is very slow, the measured values of the open-circuit-voltage (OCV) of this cell may be considered equal to the respective reversible electromotive forces (EMF). Very good resistance of the smooth YSZ products to the corrosion in highly dehydrated Li/Na molten carbonates has been shown in experiments lasting few 1000 h. Hence, the consistency of OCV values with the respective EMF values have been tested at various partial pressures of CO2 and O2 in the gas mixtures above the molten carbonate electrolyte and at various partial pressures of O2 + Ar or H2 + H2O gas mixtures at the Au or Pt electrodes/YSZ interface. The results have shown the reliability of the double-cell in determination of the open-circuit potentials (OCP) of gas electrodes at the YSZ surface as measured versus the reference electrode with molten carbonate electrolyte. The consistency of OCP and EMF values has been shown satisfying and enhances to use the proposed double-cell in further investigations of OCP and overpotential values at TPB of electrode/YSZ/mixture of reacting gases. At high differences of O2 partial pressures on both sides of the YSZ membrane some permeation of this gas through the YSZ membrane has been observed. Probably, this effect has an electrochemical character.  相似文献   

3.
A systematic investigation was conducted on the mechanism and electrocatalytic properties of O2 and Cl2 evolution on mixed oxide electrodes of nominal composition: Ti/[Ru(0.3)Ti(0.6)Ce(0.1−x)]O2[Nb2O5](x) (0 ≤ x ≤ 0.1). For the oxygen evolution, a 30 mV Tafel slope is obtained in the presence of CeO2, while in its absence a 40 mV coefficient is observed. The intrinsic electrocatalytic activity is mainly due to electronic factors, as result of the synergism between Ru and Ce oxides. For chlorine evolution, the Tafel slope (30 mV) is independent on oxide composition. The best global electrocatalytic activity for ClER was observed in the absence of Nb2O5 additive. Variation of the voltammetric charge throughout the experiments confirms high CeO2 content compositions are fragile, due mainly to the porosity caused by CeO2 presence. On the other hand, Nb2O5 addition decreases considerably this instability.  相似文献   

4.
J. Jiang 《Electrochimica acta》2006,51(17):3413-3416
The properties of graphite/Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3, y = 1/12 and 1/6) Li-ion cells are reported. There is an extended plateau near 4.5 V during the first charging of the cells that corresponds to the simultaneous removal of Li and oxygen from the Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3, y = 1/12 and 1/6) electrodes. The release of this oxygen directly within a Li-ion cell has been a cause for concern. However, it was found that subsequent to O2 release, Li-ion cells delivered a high reversible positive electrode specific capacity near 250 mAh/g at C/30 between 2.5 and 4.8 V, the cells did not display increased irreversible capacity relative to counterparts having Li metal negative electrodes and the cells retained 85% of their initial capacity after 70 cycles at C/6 between 2.5 and 4.6 V. Therefore, the O2 released during the first charge does not significantly impact the electrochemical properties of graphite/Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3) lithium-ion cells.  相似文献   

5.
This work summarises available measurements of laminar burning velocities in CH4 + H2 + O2 + N2 flames at atmospheric pressure performed using a heat flux method. Hydrogen content in the fuel was varied from 0% to 40%, amount of oxygen in the oxidiser was varied from 20.9% down to 16%, and initial temperature of the mixtures was varied from 298 to 418 K. These mixtures could be formed when enrichment by hydrogen is combined with flue gas recirculation. An empirical correlation for the laminar burning velocity covering a complete range of these measurements is derived and compared with experiments and other correlations from the literature.  相似文献   

6.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

7.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

8.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

9.
In this study, MgxM2 − xP2O7 (M = Cu, Ni; 0 ≤ x ≤ 2) and Mg3 − yNiy(PO4)2 (0 ≤ y ≤ 3) compositions were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, UV-vis-NIR spectroscopy and CIE L* a* b* (Commission Internationale de l’Eclairage L* a* b*) parameters measurements.Solid solutions with α-Cu2P2O7 and α-Ni2P2O7 structures and solid solutions with Ni3(PO4)2 structure were obtained from diphosphate and orthophosphate compositions respectively. Isostructurality of α-Ni2P2O7 and α-Mg2P2O7 structures enlarges the compositional range of solid solution formation respect to the MgxCu2 − xP2O7 solid solutions one.The CIE L* a* b* parameters in MgxNi2 − xP2O7 samples were obtained comparable with these parameters in others yellow materials suitable for ceramic pigments. Mg0.5Ni1.5P2O7 composition fired at 800 °C or 1000 °C is the optimal composition to obtain yellow materials with α-diphosphate structure in conditions of this study.  相似文献   

10.
Sub-micron Bi2Ru2O7+x + RuO2 oxide sensing electrodes (SE) for water quality sensors were prepared on platinised ceramic substrate of the sensor. Their morphology was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Sensing properties of the Bi2Ru2O7+x + RuO2-SE were investigated for potentiometric detection of pH and dissolved oxygen (DO) in water in the temperature range of 4–30 °C. Sensor was capable to measure DO from 0.5 to 8.0 ppm and pH from 2.0 to 13.0, respectively. The obtained results show acceptable linearity of the measuring characteristics. Long-term stability trial for Bi2Ru2O7+x + RuO2-SE revealed that bio-fouling can be one of the main destructive factors affecting the performance of the sensors in the long run. The screen-printing technology used in the multi-sensory implementation provides fundamental properties of miniaturization, reasonable accuracy and low cost.  相似文献   

11.
Ti-supported (Ti + Ru + Ce)O2 electrodes, prepared at 450 °C, were characterised by XRD, open-circuit potential (Eoc), capacity data (C) and morphology factor (φ) determinations. XRD measurements showed mixed oxides present a low degree of crystallinity. Eoc-data and CV-spectra support surface electrochemistry of mixed oxides is governed by the Ru(III)/Ru(IV) redox couple. In situ surface characterisation revealed the active surface area increases on increasing nominal CeO2-content. φ-Values remained in the 0.18-0.3 interval supporting the coatings have a low electrochemical porosity. Kinetics was studied recording polarisation and chronopotentiometric curves, which permitted to determine the Tafel slope and reaction order (with respect to OH), in the low and high overpotential domains. Tafel slope data, b, presented a dependence on overpotential and oxide composition indicating the OER electrode mechanism depends on these variables. A unit reaction order with respect to OH was found for all electrode compositions investigated. The theoretical analysis of the electrode mechanism permitted to analyse the changes in the experimental Tafel slopes taking into account modifications in the apparent electronic transfer coefficient, αap. Analysis of the true and apparent electrocatalytic activities revealed the O2-evolution reaction rate is affected by oxide composition due to morphologic effects.  相似文献   

12.
Li1 + x[Mn0.45Co0.40Ni0.15]O2 spherical cathode materials with different sizes (about 2 and 5 μm) were fabricated by calcining uniform spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3 with lithium hydroxide at high temperature. The precursor of spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3, was obtained via co-precipitation method at room temperature, which was significantly dependent on synthetic conditions, such as the reaction temperature, the concentration of NH4HCO3, and stirring speed, etc. The optimized condition resulted in [Mn0.45Co0.40Ni0.15]CO3, of which the particle size distribution was uniform and the particle shape was spherical. The final products, Li1 + x[Mn0.45Co0.40Ni0.15]O2, had a well-ordered layered structure and uniform homogeneity. Raman spectroscopy analysis showed the Raman-active species Eg and A1g modes were observed at 488, 473 cm− 1 and 597, 590 cm− 1, respectively, for the obtained spherical cathode materials.  相似文献   

13.
ZrO2 + 8 wt.% Y2O3 powder of a mean diameter dVS = 38 μm was milled to obtain fine particles having mean size of dVS = 1 μm. The fine powder was used to formulate a suspension with water, ethanol and their mixtures. The zeta potential of obtained suspensions was measured and found out to be in the range from −22 to −2 mV depending on suspension formulation. The suspension was injected through a nozzle into plasma jet and sprayed onto stainless steel substrates. The plasma spray experimental parameters included two variables: (i) spray distance varying from 40 to 60 mm and (ii) torch linear speed varying from 300 to 500 mm/s. The microstructure of obtained coatings was characterized with scanning electron microscope (SEM) and X-ray diffraction (XRD). The coatings had porosity in the range from 10% to 17% and the main crystal phase was tetragonal zirconium oxide. The scratch test enabled to find the critical load in the range of 9-11 N. Finally, thermal diffusivity of the samples at room temperature, determined by thermographic method, was in the range from 2.95 × 10−7 to 3.79 × 10−7 m2/s what corresponds to thermal conductivities of 0.69 W/(mK) and 0.97 W/(mK) respectively.  相似文献   

14.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

15.
M. Reffass 《Electrochimica acta》2009,54(18):4389-4396
Pitting corrosion of carbon steel electrodes in 0.1 M NaHCO3 + 0.02 M NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with the phosphate concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [HPO42−] = 0 to 180 ± 40 mV/SCE for [HPO42−] = 0.02 mol L−1. During anodic polarisation (E = 50 mV/SCE), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via the scanning vibrating electrode technique (SVET). The addition of a Na2HPO4 solution after the beginning of the polarisation did not lead to the repassivation of pre-existing well-grown pits. The corrosion products forming in the pits were identified in situ by micro-Raman spectroscopy. They depended on the phosphate concentration. For [HPO42−] = 0.004 mol L−1, siderite FeCO3 was detected first. It was oxidised later into carbonated green rust GR(CO32−) by dissolved O2. The beginning of the process is therefore similar to that observed in the absence of phosphate. Finally, GR(CO32−) was oxidised into ferrihydrite, the most poorly ordered form of Fe(III) oxides and oxyhydroxides. Phosphate species, adsorbing on the nuclei of FeOOH, inhibited their growth and crystallisation. For [HPO42−] = 0.02 mol L−1, siderite was accompanied by an amorphous precursor of vivianite, Fe2(PO4)3·8H2O. This shows that, in any case, phosphate species interact strongly with the iron species produced by the dissolution of steel.  相似文献   

16.
The stability of one material, Ti/CuxCo3−xO4, as anode and also cathode was investigated for electrolysis of alkaline aqueous solution. The electrodes were prepared by thermal decomposition method with x varied from 0 to 1.5. The accelerated life test illustrated that the electrodes with x = 0.3 nominally showed the best performance, with a total service life of 1080 h recorded in 1 M NaOH solution under alternating current direction at 1 A cm−2 and 35 °C. The effects of copper content in electrode coating were examined in terms of electrode stability, surface morphology, coating resistivity and coating compositions. The presence of Cu in the spinel structure of Co3O4 could significantly enhance the electrochemical and physicochemical properties. The trends of crystallographic properties and surface morphology have been analyzed systemically before, during and after the electrodes were employed in alkaline electrolysis. The oxygen evolution would lead to the consumption of the coating material and the progressive cracking of the coating. Along with hydrogen evolution, cobalt oxide could be reduced to metal Co and Co(OH)2 with particle sizes changed to smaller values in crystal and/or amorphous form at the cathode. The formation of Co is the key process for this electrode to serve as both anode and cathode. It is also the main reason leading to the eventual failure of the electrodes.  相似文献   

17.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

18.
The thermodynamic and kinetic properties of Pd-coated MgySc(1 − y) thin film electrodes are investigated. These thin film electrodes can be described as a two-layer structure, in which the Pd and MgySc(1 − y) layer contribute to the overall electrochemical response. In order to identify the response of the Pd layer in the two-layer system, thin films consisting of solely Pd, with identical thickness and orientation, were measured. Based on the fact that the chemical potentials of the individual layers of the Pd-coated MgySc(1 − y) thin films are equal at equilibrium, the exact hydrogen concentration in each layer could be determined. It is shown that during the major part of the hydrogen extraction process of the MgySc(1 − y) thin films, the composition of the Pd topcoat is close to PdH0.001. The kinetics of the surface reactions was investigated using electrochemical impedance spectroscopy and showed that, when cross-correlating the results of MgySc(1 − y) thin films (y = 0.65 − 0.85) and pure Pd films, the surface kinetics are completely dominated by the Pd topcoat. Additionally, it was shown that the charge transfer reaction, and not the absorption reaction is the rate-determining step. The impedance response, dominating the overall kinetic impedance at the hydrogen-depleted state, could be linked to the transfer of hydrogen across the Pd/MgySc(1 − y) interface in the two-layer thin film electrode.  相似文献   

19.
Negative thermal expansion materials ZrW2−xMoxO8 (0 ≤ x ≤ 2) have been successfully synthesized by the reaction of a mixture of ammonium tungstate and ammonium molybdate with zirconium oxynitrate using a hydrothermal method. Effect of substituted ion Mo on the microstructure, α-to-β and cubic to trigonal phase transition in resulting ZrW2−xMoxO8 powders was examined by the XRD experiments. It was found that the structural phase transition temperature decreased slightly with increasing substituted content. The cubic to trigonal phase transition was also influenced by substituted content. The resulting products decomposed to WO3/MoO3 and ZrO2 as temperature increasing when x ≤ 0.5 and while x > 0.5, the cubic phase transited to trigonal phase. The effect of substituted Mo on the morphology of resulting products was also investigated by SEM experiments.  相似文献   

20.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号