首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
The effect of the alkyl side group on the synthesis and the electrochemical properties of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1ATFSI) ionic liquids (ILs) is reported. The investigation was focused on the PYR1ATFSI ionic liquid family because of the interesting electrochemical properties of the members with propyl and butyl side chains. Side alkyl groups (A = CnH2n+1 with n ranging from 1 to 10) of different length and structure were used for the synthesis of PYR1ATFSI materials. NMR and DSC have shown that the ionic liquids were correctly synthesized with the exception of the compounds with tertiary side chains. Most of the materials exhibited a conductivity higher than 10−3 S cm−1 already at 12 °C. In the molten state a moderate conductivity decrease was observed with increasing the length and the branching of the side chain (C2H2n+1) group according with the change of viscosity of the ionic liquids. Most of the PYR1ATFSI samples exhibited an electrochemical stability window exceeding 5 V.  相似文献   

2.
Anhydrous proton-conducting inorganic-organic hybrid membranes were prepared by sol-gel process with tetramethoxysilane/methyl-trimethoxysilane/trimethylphosphate and 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide [EMI][TFSI] ionic liquid as precursors. These hybrid membranes were studied with respect to their structural, thermal, proton conductivity, and hydrogen permeability properties. The Fourier transform infrared spectroscopy (FT-IR) and 31P, 1H, and 13C nuclear magnetic resonance (NMR) measurements have shown good chemical stability, and complexation of PO(OCH3)3 with [EMI][TFSI] ionic liquid in the studied hybrid membranes. Thermal analysis including TG and DTA confirmed that the membranes were thermally stable up to 330 °C. Thermal stability of the hybrid membranes was significantly enhanced by the presence of inorganic SiO2 framework and high stability of [TFSI] anion. The effect of [EMI][TFSI] ionic liquid addition on the microstructure of the membranes was studied by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) micrographs and no phase separation at the surfaces of the prepared membranes was observed and also homogeneous distribution of all elements was confirmed. Proton conductivity of all the prepared membranes was measured from −20 °C to 150 °C, and high conductivity of 5.4 × 10−3 S/cm was obtained for 40 wt% [EMI][TFSI] doped 40TMOS-50MTMOS-10PO(OCH3)3 (mol%) hybrid membrane, at 150 °C under anhydrous conditions. The hydrogen permeability was found to decrease from 1.61 × 10−11 to 1.39 × 10−12 mol/cm s Pa for 40 wt% [EMI][TFSI] doped hybrid membrane as the temperature increases from 20 °C to 150 °C. For 40 wt% [EMI][TFSI] doped hybrid membrane, membrane electrode assemblies were prepared and a maximum power density value of 0.22 mW/cm2 at 0.47 mA/cm2 as well as a current density of 0.76 mA/cm2 were obtained at 150 °C under non-humidified conditions when utilized in a H2/O2 fuel cell.  相似文献   

3.
Sixteen new guanidinium salts based on small cations and TFSI anion were prepared and characterized. Physical and electrochemical properties of these products, including melting point, thermal stability, viscosity, conductivity and electrochemical window were investigated. Reducing symmetry of cations can reduce the melting points, and 12 products are liquids at room temperature. The viscosities of cg22TFSI, cg12TFSI and cg13TFSI were 45, 46 and 52 mPa s at 25 °C, respectively. Electrochemical and thermal stabilities of these ILs permitted them to become promising electrolytes used in electrochemical devices.  相似文献   

4.
New functionalized ionic liquids (ILs), comprised of multi-methoxyethyl substituted quaternary ammonium cations (i.e. [N(CH2CH2OCH3)4−n(R)n]+; n = 1, R = CH3OCH2CH2; n = 1, R = CH3, CH2CH3; n = 2, R = CH3CH2), and two representative perfluorinated sulfonimide anions (i.e. bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI)), were prepared. Their fundamental properties, including phase transition, thermal stability, viscosity, density, specific conductivity and electrochemical window, were extensively characterized. These multi-ether functionalized ionic liquids exhibit good capability of dissolving lithium salts. Their binary electrolytes containing high concentration of the corresponding lithium salt ([Li+] >1.6 mol kg−1) show Li+ ion transference number (tLi+) as high as 0.6-0.7. Their electrochemical stability allows Li deposition/stripping realized at room temperature. The desired properties of these multi-ether functionalized ionic liquids make them potential electrolytes for Li (or Li-ion) batteries.  相似文献   

5.
Eight new functionalized guanidinium ILs based on small cations containing ether group (methoxyethyl group) or ester group (methyl acetate group) and TFSI anion were synthesized and characterized. Physical and electrochemical properties of these products, including melting point, thermal stability, viscosity, conductivity and electrochemical window, were investigated. All the products were liquids at room temperature, and they had low-melting points. The viscosities of cg1(2o1)TFSI and cg2(2o1)TFSI were 46 and 48 mPa s at 25 °C, respectively. Electrochemical and thermal stabilities of these functionalized guanidinum ILs permitted them to become potential electrolytes used in electrochemical devices.  相似文献   

6.
The fundamental natures of the interaction between thiophene and ionic liquids of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]+[PF6]) and 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]) were investigated using ab initio calculations and correlated with previous experimental results. The optimized structures show that the anions of the ionic liquids are situated outside the ring plane of the thiophene, with the fluorine atoms interacting with the hydrogen atoms of the thiophene, and the cation of the ionic liquids approaches the thiophene with its positively charged atoms approaching the negatively charged atoms of TS. It is concluded that thiophene molecules interact with the ionic liquids mainly via Coulombian attraction. Further analysis explained the results obtained from an absorption experiment that the molar ratios of the absorbed thiophene to the ionic liquids were approximately 3.5/1 and 2.4/1 for [BMIM]+[PF6] and [BMIM]+[BF4], respectively. The strong electron donation of the phosphorus atom to the fluorine atoms in the PF6 cluster is believed to be the major factor resulting in the higher molar ratio of thiophene/[BMIM]+[PF6]. The other factor is the difference of the compactness between the cation and the anion in the two ionic liquids.  相似文献   

7.
FTIR spectroscopy was used to identify the oxochloride species of tantalum(V) in ionic liquids and to confirm the correlations between their presence in electrolytes and the changes in the route of electrochemical reduction of tantalum(V). Electrochemical behaviour of the mixtures (x)1-butyl-1-methyl-pyrrolidinium chloride-(1 − x)TaCl5 at x = 0.80, 0.65, and 0.40 was investigated over the temperature range 90-160 °C with respect to the electrochemical deposition of tantalum and was discussed in terms of spectroscopic data. The mechanism of electrochemical reduction of tantalum(V) in the basic and acidic electrolytes depends strongly on the structure and composition of the electro active species of tantalum(V) defined by the molar composition of ionic liquids and on the competition between tantalum(V) chloride and oxochloride species. In the basic mixture at x = 0.80, with octahedral [TaCl6] ions as the electrochemically active species only the first reduction step Ta5+ → Ta4+ at −0.31 V was observed. The competitive reduction of tantalum(V) oxochloride species occurs at more anodic potential (−0.01 V) than the reduction of the chloride complexes and can restrict the further reduction of tantalum(IV). In the basic ionic liquid at x = 0.65, the cyclic voltammograms exhibit reduction peaks at −0.31 V and −0.51 V attributed to the diffusion controlled process as [TaCl6] + e → [TaCl6]2− and [TaCl6]2− + e → [TaCl6]3−. The further irreversible reduction of tantalum(III) to metallic state may occur at −2.1 V. In the acidic ionic liquids, at x = 0.40 the electrochemical reduction of two species occurs, TaCl6 and Ta2Cl11 and it is limited by two electron transfer for both of them at −0.3 V and −1.5 V, respectively.  相似文献   

8.
Silver nanoparticles exhibiting antimicrobial properties via self-regulated reduction were successfully prepared by using hydroxylated ionic liquids in an aqueous phase without additives. A new water-phase synthesis of silver nanoparticles using 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([HEMIm][BF4]) and 1-(2′-hydroxyethyl)-2-methyl-3-dodecylimidazolium chloride ([C12HEMIm][Cl]) was described. 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate serves as both a reductant and a stabilizer in this fabrication. Furthermore, we presented the antimicrobial properties of the resulting silver nanoparticles through the minimal inhibitory concentrations (MIC) test.  相似文献   

9.
An aliphatic quaternary ammonium salt which has a methoxyethyl group on the nitrogen atom formed an ionic liquid (room temperature molten salt) when combined with the tetrafluoroborate (BF4) and bis(trifluoromethylsulfonyl)imide [TFSI; (CF3SO2)2N] anions. The limiting oxidation and reduction potentials, specific conductivity, and some other physicochemical properties of the novel ionic liquids, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEME-BF4) and DEME-TFSI have been evaluated and compared with those of 1-ethyl-3-methylimidazolium tetrafluoroborate. DEME-BF4 is a practically useful ionic liquid for electrochemical capacitors as it has a quite wide potential window (6.0 V) and high ionic conductivity (4.8 mS cm−1 at 25 °C). We prepared an electric double layer capacitor (EDLC) composed of a pair of activated carbon electrodes and DEME-BF4 as the electrolyte. This EDLC (working voltage ∼2.5 V) has both, a higher capacity above room temperature and a better charge-discharge cycle durability at 100 °C when compared to a conventional EDLC using an organic liquid electrolyte such as a tetraethylammonium tetrafluoroborate in propylene carbonate.  相似文献   

10.
Electrochemical behaviour of Ti(IV) species in the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMMImBF4) was studied by means of chronopotentiometry (CP) and cyclic voltammetry (CV) in melts with different concentrations of TiF4 (2-35 mol%) within a temperature range of 65-180 °C. The electrochemical reduction of Ti(IV) was suggested to proceed via the sequence of one-electron steps with the formation of poorly soluble low valence intermediates (LVI). LVIs undergo further solid-state electrochemical reduction to Ti metal. Thin Ti coatings on a Pt substrate were thus obtained and characterized by ESEM method. FTIR spectroscopy was used for identification of the electrochemical active species of Ti(IV). The reaction 2BF4 + TiF4 ⇔ TiF62− + 2BF3↑ takes place in the concentrated solutions of TiF4 at elevated temperatures.  相似文献   

11.
In this study, we synthesized a molecular hybrid conductor electrolyte using PWA ([H3PW12O40·nH2O]) and [1-butyl-3-methylimidazole][bis-(fluoromethanesulfonyl) amide] ([BMIM][TFSI]) ionic liquid. The [BMIM][TFSI] ionic liquid can interact with the strongly acidic PWA. The hybrids were hydrophilic, and included some water molecules in the structure of the hybrids. The water molecules remained up to 80 °C, contributing to improve conductivity under an anhydrous N2 atmosphere. The conductivity of PWA-[BMIM][TFSI] hybrid under anhydrous conditions increased from 10−4 S/cm to 0.04 S/cm at 60 °C. The conductivity of the hybrids at each temperature was higher than that of pure PWA and [BMIM][TFSI] under anhydrous condition. It can be due to the protonic carriers.  相似文献   

12.
Tomonobu Mizumo 《Polymer》2004,45(3):861-864
Poly(propylene oxide) (PPO) tailed lithium(trifluoromethyl sulfonylimide)s (TFSI-PPO) were prepared as non-onium type ionic liquid polymers. Introduction of PPO chain to the TFSI salt group resulted in lower the glass transition temperature (Tg) and induce the salt dissociation. The TFSI-PPO showed relatively high ionic conductivity owing to the high dissociation degree of the TFSI salt group. The maximum ionic conductivity of 3.3×10−6 S cm−1 was observed at 30 °C for TFSI salt having PPO tail with number average molecular weight of 850. On the other hand, PPOs having the same salt moiety on both chain ends ((TFSI)2-PPO) showed higher Tg than that of TFSI-PPOs. The lithium transference number of the (TFSI)2-PPO with PPO chain length of Mn=2000 was 0.74 in spite of slightly lower ionic conductivity.  相似文献   

13.
A new class of difluoroalkoxyborane compounds ([RnOBF2]2) containing oligooxyethylene groups of various molecular weight in the form of a methyl monoether (Rn = CH3(OCH2CH2)n, n = 1, 2, 3 and 7) has been obtained in the reaction of BF3 etherate with appropriate glycols. 1H, 11B and 19F NMR spectral analysis of the derivatives obtained was carried out and the properties as Lewis acids of these derivatives have been compared with that of corresponding trialkoxyboranes and boron trifluoride in reaction with pyridine. The strength of the interaction of [R2OBF2]2 with the differing in “hardness” anions of various lithium salts has been analyzed on the basis of NMR spectra. The [RnOBF2]2 obtained were used as additives for polymer electrolytes containing PEO as polymer matrix and various lithium salts at an equimolar ratio of the boron compound to salt. The highest ionic conductivities, in the order 10−5 to 10−4 S cm−1 at 20-70 °C, were achieved for systems containing LiI and LiN(CF3SO2)2. The lithium transference number (t+) values, determined by the electrochemical method by steady-state technique for LiF and LiCF3SO3 are in the 0.6-0.8 range.  相似文献   

14.
The electrochemical and diffusion behaviour of different redox probes in different ionic liquids is studied at gold nanoelectrode ensembles (NEEs) in comparison with millimetre sized gold (Au-macro) and glassy carbon (GC) disk electrodes. The redox probes are neutral ferrocene (Fc), the ferrocenylmethyltrimetylammonium cation (FA+) and the ferrocenylmonocarboxylate anion (FcCOO). The ILs are the dicyanamide, [N(CN)2] or bis(trifluoromethylsulfonyl)amide), [N(Tf)2] salts of the following cations: 1-butyl-3-methylimidazolium, [BMIm], 1-butyl-3-methylpyrrolidonium, [BMPy], or tris(n-hexyl)tetradecylphosphonium [P14,666]. These ILs are characterized by different viscosities, ranging from 32 to 277 cP. The cyclic voltammetric behaviour of the redox probes is reversible and diffusion controlled at GC electrodes. Diffusion coefficients (D) calculated by the Randles-Sevcik equation scales inversely with the IL viscosity, ranging from 2 × 10−8 to 3 × 10−7 cm2 s−1. Ionic solutes, namely FA+ and FcCOO, present slightly lower D values than neutral Fc. At the Au-macro the electrochemical behaviour of the redox probes is diffusion controlled in the ILs containing the [N(Tf)2] anion, while it involves relevant adsorption processes in the [N(CN)2] containing electrolyte. For this reason the diffusion at gold NEEs is studied only in the former ILs.The CVs of the redox probes at the NEEs are peak shaped at low scan rate (v), while they are sigmoidally shaped at high v, but with some shift between forward and backward patterns. This is indicative of the occurrence of a total overlap (TO) diffusion condition when v is low which becomes a mixed diffusion layers (MDL) regime, with only a partial overlapping of individual diffusion layers, at high v values. In the most viscous IL, namely [P14,666] [N(Tf)2], at v higher than 0.8 V s−1, a plateau current independent on the scan rate is achieved, indicating the tendency to reach the pure radial regime in this IL. The v values at which the transition between TO and MDL is observed scales directly with D and inversely with the IL viscosity. This behaviour is interpreted on the basis of the dependence of individual diffusion layers at each nanoelectrode on redox probe/IL interaction which fits with existing theoretical models very recently developed for nanoelectrode arrays.  相似文献   

15.
The universal quasichemical functional‐group activity coefficients (UNIFAC) model for ionic liquids (ILs) has become notably popular because of its simplicity and availability via modern process simulation softwares. In this work, new group binary interaction parameters (αmn and αnm) between CO (H2) and IL groups were obtained by correlating the solubility data in pure ILs at high temperatures (above 273.2 K) collected from the literature. the solubility of CO in [BMIM]+[BF4]?, [OMIM]+[BF4]?, [OMIM]+[Tf2N]?, and their mixtures, as well as that of H2 in [EMIM]+[BF4]?, [BMIM]+[BF4]?, [OMIM]+[Tf2N]?, and their mixtures, at temperatures from 243.2 to 333.2 K and pressures up to 6.0 MPa were measured. The UNIFAC model was observed to well predict the solubility in pure and mixed ILs at both high (above 273.2 K) and low (below 273.2 K) temperatures. Moreover, the selectivity of CO (or H2) to CO2 in ILs increases with decreasing temperature, indicating that low temperatures favor for gas separation. © 2014 American Institute of Chemical Engineers AIChE J 60: 4222–4231, 2014  相似文献   

16.
J.-H. Shin 《Electrochimica acta》2005,50(19):3859-3865
Solvent-free P(EO)20LiTFSI + PYR14TFSI polymer electrolyte films with PYR14+/Li+ mole ratios ranging from 0.96 to 3.22 were prepared by hot-pressing mixtures composed of PEO, LiTFSI and PYR14TFSI of selected stoichiometries. The PYR14TFSI room temperature ionic liquid (RTIL) is homogeneously incorporated into the P(EO)20LiTFSI membrane without phase separation. For a PYR14+/Li+ mole ratio of 3.22, the ionic conductivity was about 2 × 10−4 S/cm at 20 °C, i.e., more than one order of magnitude higher than that of the RTIL-free electrolyte. The electrochemical stability window of the polymer electrolyte containing the RTIL was about 6 V (versus Ag/Ag+). Li/V2O5 cells with the polymer electrolyte (PYR14+/Li+ = 1.92) showed a 60% capacity retention after 80 cycles at 40 °C (the initial capacity was 210 mA h/g). Li/V2O5 cells (PYR14+/Li+ = 1.28) held at 30 °C delivered about 93 mA h/g (at 0.057 mA/cm2), which corresponds to approximately 34% utilization of the active material. These results suggest that the incorporation of the RTILs into PEO-based polymer electrolytes is very promising for the future realization of solid-state lithium metal polymer batteries operating near ambient temperatures.  相似文献   

17.
A novel ionic liquid of trifluoroacetic propylamine, i.e., [CH3CH2CH2NH3+] [CF3COO] (TFAPA), was synthesized from trifluoroacetic acid and propylamine. The ionic liquid of TFAPA was used to prepare anhydrous, conducting membranes based on polymers of sulfonated poly (ether ether) ketone (SPEEK) or polyvinylidenefluoride (PVDF). The ionic conductivity and mechanical strength of the composite membranes were investigated at elevated temperatures and under anhydrous conditions. Conductivity of 0.030 S/cm was achieved with TFAPA at 180 °C, and of 0.019 S/cm with a membrane containing 70% (wt) TFAPA in SPEEK with a sulfonation degree of 86% at 160 °C. Increasing either ionic liquid content or temperature reduced the mechanical strength of the composite membrane. Efforts were made to improve the strength of TFAPA/SPEEK composite membranes by cross-linking the SPEEK, which led to some strength enhancement at 110 °C and 130 °C.  相似文献   

18.
Room temperature ionic liquids (RTILs) were used in electrochemical polymerization and in doping studies (oxidation and reduction) of poly(para-phenylene) (PPP). Cyclic voltammetry was used simultaneously with Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. Electropolymerization and doping of PPP were done by potential scanning in acetonitrile (ACN + 0.1 M TBAPF6), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and butylmethylpyrrolidinium bis (trifluoromethylsulfonyl) imide ([BMP][Tf2N]). The cyclic voltammograms recorded during polymerization of the PPP film indicate that the best film growth was achieved in [BMIM][PF6]. The films made in [BMP][Tf2N] were more stable than films made in ACN (0.1 M TBAPF6). Results from p-doping studies show that doping can be made at higher potentials in RTILs than in ACN (0.1 M TBAPF6). It was also found that n-doping can be performed in RTILs at higher negative potentials (−2.2 V) than in ACN (0.1 M TBAPF6) (−1.8 V). The best n-doping response was achieved in [BMP][Tf2N]. Also, n-doping in [BMIM][PF6] was better than in ACN (0.1 M TBAPF6). The in situ ATR-FTIR spectroscopy was used to study p- and n-doping of PPP films. During both p- and n-doping the spectra indicated formation of infrared active vibration bands (IRAV) in the wavenumber region 1600-800 cm−1. The obtained IRAV bands correlate to the theoretical modes calculated by Zerbi and co-workers according to the effective conjugation coordinate theory (ECC). All these results indicate that RTILs are good solvents in spectroscopic and electrochemical studies of conducting polymers.  相似文献   

19.
The electrochemical behavior of p-tert-butyl calix[8]arene has been investigated by cyclic voltammetry. The result shows that there is an irreversible electrochemical oxidative wave when the potential ranges from −0.3 to 1.6 V versus Ag/0.1 M AgNO3 in acetonitrile (Ag/Ag+). At 25 °C, the peak potential is ca. 1.43 V (versus Ag/Ag+) at scan rate of 0.05 V s−1. The number of the electrons transferred in the electrochemical reaction is four. The diffusion coefficient of p-tert-butyl calix[8]arene is 2.8 × 10−5 cm2 s−1. The diffusion activation energy is 12.3 kJ mol−1.  相似文献   

20.
In this study, a strategy for synthesizing lithium methacrylate (LiMA)-based self-doped gel polymer electrolytes was described and the electrochemical properties were investigated by impedance spectroscopy and linear sweep voltammetry. LiMA was found to dissolve in ethylene carbonate (EC)/diethyl carbonate (DEC) (3/7, v/v) solvent after complexing with boron trifluoride (BF3). This was achieved by lowering the ionic interactions between the methacrylic anion and lithium cation. As a result, gel polymer electrolytes consisting of BF3-LiMA complexes and poly(ethylene glycol) diacrylate were successfully synthesized by radical polymerization in an EC/DEC liquid electrolyte. The FT-IR and AC impedance measurements revealed that the incorporation of BF3 into the gel polymer electrolytes increases the solubility of LiMA and the ionic conductivity by enhancing the ion disassociations. Despite the self-doped nature of the LiMA salt, an ionic conductivity value of 3.0 × 10−5 S cm−1 was achieved at 25 °C in the gel polymer electrolyte with 49 wt% of polymer content. Furthermore, linear sweep voltammetry measurements showed that the electrochemical stability of the gel polymer electrolyte was around 5.0 V at 25 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号