首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the chlorine evolution on titanium electrodes coated with a layer of ruthenium oxide and titanium oxide under different experimental conditions, and on a ruthenium electrode, both in acidic chloride solution, has been investigated. Potentiodynamic current density—potential curves were recorded as a function of the time anodic pre-polarisation, the composition of the solution and the temperature. Moreover, potential decay curves were determined. Theoretical potential decay curves were deduced for both the Tafel reaction (2 Clad→Cl2) and the Heyrovsky reaction (Cl? + Clad → Cl2 + e?) as a rate determining step in the formation of molecular chlorine. They were compared with those found experimentally. The influence of possible diffusion of atomic chlorine out of the electrode was also taken into consideration. It was found that for all the electrodes investigated, molecular chlorine is formed both at anodic polarisation and on open circuit according to the Volmer—Heyrovsky mechanism, where the Heyrovsky reaction is the rate-determining step. The transfer coefficient is 0.5 for the chlorine evolution at an “ideal” ruthenium oxide titanium oxide electrode and at a ruthenium electrode.  相似文献   

2.
The behaviour of a mixed oxide coating thermally deposited on titanium has been examined with respect to the anodic discharge of chloride ions.The electrochemical properties are similar to those of thermal Pt and Pt-Ir alloy electrodes: chlorine evolution takes place through an electrochemical-chemical mechanism, the 2CladsCl2 step being rate determining.Evidence is given about the mechanical and chemical stability of the coating and about the satisfactory reproducibility of the catalytic properties. Moreover, the current efficiency for chlorine evolution appears to be at least 99% at high current densities (up to 16,000 A/m2).  相似文献   

3.
4.
You-Jun Fan 《Electrochimica acta》2004,49(26):4659-4666
The dissociative adsorption of ethylene glycol (EG) on Pt(1 0 0) electrode surface cooled in air after flame annealing was investigated by using programmed potential step technique and in situ FTIR spectroscopy. The stable adsorbates derived from EG dissociative adsorption on Pt(1 0 0) were determined by in situ FTIR spectroscopy as linear- and bridge-bonded CO. The quantitative results demonstrated that the average rate of dissociative adsorption of EG on Pt(1 0 0) surface varies with electrode potential, yielding a volcano-type distribution with a maximum value located near 0.10 V versus SCE. From the variation of the quantity of CO adsorbates generated in EG dissociative adsorption with the adsorption time tad, the initial rate (νi) of this surface reaction was evaluated quantitatively. The maximum value of νi has been determined to be 2.64 × 10−11 mol cm−2 s−1 in a solution containing 2 × 10−3 mol L−1 EG. The influence of the surface structure of Pt(1 0 0) electrode obtained by different pretreatment as well as of the specific adsorption of (bi)sulfate anions on the kinetics of EG dissociative adsorption has been also investigated and discussed. In comparison with a Pt(1 0 0) surface cooled in air atmosphere after flame treatment, the Pt(1 0 0) surface cooled in an Ar-H2 stream or subjected to a treatment of fast potential cycling decreased significantly the initial rate νi of EG dissociative adsorption. Similar effect was also observed for the specific adsorption of (bi)sulfate anions. However, the maximum attainable coverage () of adsorbates derived from EG dissociative adsorption is not affected either by the surface structure of Pt(1 0 0) or by (bi)sulfate anions adsorption.  相似文献   

5.
In this work, the mechanism of the ethanol oxidation reaction (EOR) on a palladium electrode was studied using the cyclic voltammetry method. The dissociative adsorption of ethanol was found to proceed rather quickly and the rate-determining step was the removal of the adsorbed ethoxi by the adsorbed hydroxyl on the Pd electrode. The Tafel slope was found to be 130 mV dec−1 at lower potentials, which suggests that the adsorption of OH ions follows the Temkin-type isotherm on the Pd electrode. In comparison, the Tafel slope increased gradually to 250 mV dec−1 at higher potentials. The change in the Tafel slope indicated that, at higher potentials, the kinetics is not only affected by the adsorption of the OH ions, but also by the formation of the inactive oxide layer on the Pd electrode.  相似文献   

6.
The electrogenerated chemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy)32+ resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pKa being known. The nature of the rate determining steps changes depending on pH. Above pH ≈ 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 103 s−1; below pH ≈ 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pKa values of the ammonium ions. An ion pair formation between R3N+ and the mostly charged species present in solution is hypothesized to explain the contradictory experimental results concerning the reaction mechanism of the proton lost of the radical cation.  相似文献   

7.
This work presents a study of the electrochemical properties of Th chloride ions dissolved in a molten LiCl-KCl eutectic, in a temperature range of 693-823 K. Transient electrochemical techniques such as cyclic voltammetry, chronopotentiommetry and chronoamperometry have been used in order to investigate the reduction mechanism on a tungsten electrode and the diffusion coefficient of dissolved Th ions. All techniques showed that only one valence state was stable in the melt. The reduction into Th metal was found to occur according to a one-step mechanism, through a nucleation-controlled process which requires an overpotential of several 100 mV. At 723 K, the diffusion coefficient is DTh(723 K) = 3.15 ± 0.15 × 10−5 cm2 s−1. EMF measurements indicated that, at 723 K, the standard apparent potential is (723 K) = −2.582 V versus Cl2/Cl, and the activity coefficient γThCl4 (723 K) = 4.6 × 10−4 on the mole fraction scale (based on a pure liquid reference state).  相似文献   

8.
Gold is a good electrocatalyst for alcoholamine oxidation in basic media. In this work the effect of alcoholamine concentration, electrolyte pH and potential scan rate on electrooxidation was studied. The adsorption of alcoholamines on a layer plays a significant role in the oxidation mechanism. The rate determining step of the process was found to be heterogeneous dehydrogenation of the alcoholamine molecule, involving electron transfer to the gold electrode and the formation of water molecule. The catalytic effect of the gold electrode on alcoholamine oxidation is higher than that observed both for aliphatic alcohol and amines.  相似文献   

9.
The decomposition of 1,2-dichloroethane on polycrystalline copper has been studied using a microreactor. The reaction is found to have an activation energy of 81±5 kJ mol–1 generating gaseous ethene and chemisorbed chlorine. The reaction terminates on completion of a monolayer of chemisorbed chlorine and is followed by a much slower reaction. The rate limiting step is thought to be C2H4Cl2(phys)C2H4Cl(ads)+Clads The reaction is compared with a UHV study of the same molecule on Cu(l 11) and the possibility of a negative ion transition state is discussed.  相似文献   

10.
The rate and mechanism of the electroreduction of chlorine on electrooxidised ruthenium has been investigated with focus on the effect of solution pH. Current/potential curves for the reduction process in solutions with constant chloride concentration of 1.0 mol dm−3 and varying H+ concentration have been obtained with the use of the rotating disk electrode technique (RDE). It was found that the chlorine reduction rate is highly inhibited in solutions with high H+ concentrations and that it can be satisfactorily described by the Erenburg mechanism, previously suggested for the chlorine evolution on RuO2 and RTO. The expression of the kinetic current as a function of chlorine and H+ concentration was obtained by solving the elementary rate equations of the kinetic mechanism. The kinetic constants obtained from the correlation of the kinetic current expression to the experimental data were used to simulate the dependence of the surface coverages and elementary reaction rates on overpotential.  相似文献   

11.
This work presents a study on the electrochemical properties of AmCl3 in a molten LiCl-KCl eutectic, at a temperature range of 733-833 K. Transient electrochemical techniques, such as cyclic voltammetry and chronopotentiometry, on inert metallic tungsten working electrode have been used to investigate the reduction mechanism of Am3+ ions. The results show that Am3+ is reduced to Am metal by a two-step mechanism corresponding to the Am3+/Am2+ and Am2+/Am0 transitions. Formal standard potentials of Am3+/Am2+ ( versus Cl2/Cl at 733 K) and Am2+/Am0 ( versus Cl2/Cl at 733 K) redox couples as well as diffusion coefficients of Am3+ and Am2+ (2.4 × 10−5 and 1.15 × 10−5 cm2 s−1 at 733 K, respectively) have been calculated at three different temperatures. In the studied range of temperature, the DAm3+/DAm2+ ratio was found to be around 2. In addition, thermodynamic properties have been calculated for Am3+ () and Am2+ () and compared to thermodynamic reference data in order to estimate activity coefficients (Am3+ = 4.7 × 10−3 and Am2+ = 2.7 × 10−2 at 733 K) in the molten LiCl-KCl eutectic.  相似文献   

12.
Cu(II) and Sn(II) reduction in acid sulphate solutions containing polyether laprol DS-10 was investigated using voltammetric XPS and XRD techniques. Bright yellow bronze coatings can be deposited at potentials (E) that are positive than equilibrium potential () of Sn|Sn2+ electrode. Here, Sn(II) reduction might be treated as underpotential deposition (UPD) of tin on foreign (copper) substrate. Further incorporation of tin into integral Cu-Sn crystallic lattice yields the mixture of pure copper, α-CuSn phase and intermediate hexagonal hcp phase. The formation of free tin phase occurs at . This gives rise for strong inhibitive adsorption of sintanol that manifests itself in the development of deep voltammetric minimum.Addition of halides results in the shift of codeposition potential to more negative values and in the increase of copper content in the coatings deposited in the UPD region. The action of halides intensifies in the sequence Cl < Br < I. If iodide concentration exceeds 2-3 μM, deposition of yellow bronze becomes impossible.  相似文献   

13.
D. Fu 《Electrochimica acta》2010,55(11):3787-18529
The electrochemical reduction and oxidation kinetics of hydrogen peroxide on γ-FeOOH films chemically deposited on indium tin oxide substrates were studied over the pH range of 9.2-12.6 and the H2O2 concentration range of 10−4 to 10−2 mol dm−3. The Tafel slopes for H2O2 reduction and oxidation obtained from polarization measurements are 106 ± 4 and 93 ± 15 mV dec−1, respectively, independent of pH and the concentration of H2O2. Both the reduction and oxidation of H2O2 on γ-FeOOH have a first-order dependence on the concentration of molecular H2O2. However, for the pH dependence, the reduction has an inverse first-order dependence, whereas the oxidation has a first-order dependence, on the concentration of OH. For both cases the electroactive species is the molecular H2O2, not its base form, HO2. Based on these observations, reaction kinetic mechanisms are proposed which involve adsorbed radical intermediates; HOOH and HO for the reduction, and HO2H+, HO2, and O2 for the oxidation. These intermediates are assumed to be in linear adsorption equilibria with OH and H+ in the bulk aqueous phase, respectively, giving the observed pH dependences. The rate-determining step is the reduction or oxidation of the adsorbed H2O2 to the corresponding intermediates, a reaction step which involves the use of FeIII/FeII sites in the γ-FeOOH surface as an electron donor-acceptor relay. The rate constant for the H2O2 decomposition on γ-FeOOH determined from the oxidation and reduction of Tafel lines is very low, indicating that the γ-FeOOH surface is a very poor catalyst for H2O2 decomposition.  相似文献   

14.
The potential-dependent chemical reaction of perchloroethylene (PCE) on copper in neutral noncomplexing aqueous media is explored by means of surface-enhanced Raman spectroscopy (SERS), linear sweep voltammetry and preparative electrolysis at controlled potential. Voltammetric peaks associated with copper oxide reduction in Na2SO4 solution in the presence and the absence of Cl are correlated with simultaneously acquired SER spectra. Perchloroethylene undergoes a dechlorination process at potentials at E ≤ −0.3 V vs. Ag/AgCl/KCl (3 M), as shown by the emergence of an intense CuCl stretching band at 290 cm−1 and a CH stretching band together with the presence of Cl in the catholyte. In the potential region between 0 and −0.9 V vs. Ag/AgCl/KCl (3 M) a broad band assigned to CC structures is observed in the triple-bond region (∼1900 cm−1, FWHM = 180 cm−1). In addition, dichloroethylene (DCE) is detected (but not trichloroethylene (TCE)) in this potential region during preparative electrolysis. At potentials lower than −1 V vs. Ag/AgCl/KCl (3 M) carbon residues are the main product, detected on the copper surface by SERS (and confirmed by XPS), whereas in solution higher levels of dichloroethylene and trichloroethylene are detected with a DCE/TCE ratio below 1.  相似文献   

15.
The electrochemical behaviour of chlorine and chloride solutions in acetonitrile at platinum electrodes has been studied. The rotating disk electrode technique was applied in a temperature range of −6 to 30 ± 0·1°C. The over-all reaction Cl2 + 2 e ? 2 Cl undergoes a two-electron exchange per mol of chlorine and only one anodic and one cathodic wave are found.  相似文献   

16.
The kinetics of l-cystine hydrochloride reduction have been studied at a mercury-plated copper rotating disc electrode (RDE) and at a stationary mercury disc electrode (SMDE) in 0.1 mol dm−3 HCl at 298 K. The reduction of the disulphide is irreversible and hydrogen evolution is the major side reaction. In contrast to steady state electrode kinetic studies at a mercury drop electrode (which shows a well-defined limiting current), the mercury-plated Cu RDE shows overlap between disulphide reduction and hydrogen evolution. These effects are attributable to strong reactant adsorption with a calculated surface coverage close to 100%. A Tafel slope of −185 mV per decade is found with a cathodic transfer coefficient of 0.32 and a formal rate constant of 6.7 × 10−9 m s−1. The relative merits of steady state voltammetry at a mercury-plated copper RDE and linear sweep voltammetry at the SMDE are discussed, as is the mechanism of l-cysteine hydrochloride formation.  相似文献   

17.
The electroreduction of the peroxodisulfate anion on the electrochemically polished (EP) Cd(0 0 0 1) plane has been studied by cyclic voltammetry and rotating disc electrode methods. The rate constant of the heterogeneous electroreduction reaction of the S2O82− anion on the EP Cd(0 0 0 1) plane dependent on electrode polarisation and base electrolyte concentration has been established. The values of apparent transfer coefficient αapp corrected for the double layer effect, noticeably lower than 0.5 for the EP Cd(0 0 0 1) plane, only very weakly depend on the electrode potential but noticeably on the electrolyte concentration, decreasing with the base electrolyte concentration. The very low values of the apparent charge transfer coefficient show that the activationless charge transfer mechanism is probably valid for EP aqueous solution interface in a good agreement with the theoretical models for the high hydrogen overvoltage metals based on the diabatic charge transfer mechanism from the metal to an ion.  相似文献   

18.
The adsorption of the additive polyethyleneglycol 8000 (PEG8) and its coadsorption with Cl ions was investigated by cyclic voltammetry and linear potential scans in conjunction with simultaneous measurements of the frequency change of an electrochemical quartz crystal microbalance (EQCM). Data obtained from the studies of EQCM for solutions of HClO4 containing PEG8, shows the formation of a peak (IcI) in the potential range from 0.2 to 0.4 V during the cathodic potential scan, which is due to the adsorption of PEG8 onto Pt. Analysis of simultaneously recorded massograms and voltammograms revealed that the adsorption of PEG8 occurs via a non-Faradaic process, and that no adsorption of PEG8 is observed at the open circuit potential. As the concentration of PEG8 in the solution was increased over the range  M, the degree of coating by PEG8 on the Pt surface increased to 0.21. The presence of Cl ions in the solution inhibited PEG8 adsorption, and the degree of inhibition gradually increased with increasing Cl concentration.  相似文献   

19.
Nanostructured Pt electrodes were prepared by electrodeposition of Pt nanoparticles on different substrates (GC, Pt and Au) under cyclic voltammetric conditions and with various number (n) of potential cycling, and were denoted as nm-Pt/S(n) (S = GC, Pt and Au). Adsorption of (bi)sulfate on the nm-Pt/S(n) was studied by in situ FTIR reflection spectroscopy. It has been revealed that the nanostructured Pt electrodes exhibit anomalous IR properties for (bi)sulfate adsorption regardless of the different reflectivity of substrate, i.e. the IR absorption of (bi)sulfate species adsorbed on all the nm-Pt/S(n) electrodes is significantly enhanced and the IR band direction is completely inverted in comparison with the same species adsorbed on a bulk Pt electrode. The two IR bands around 1200 and 1110 cm−1 attributed to adsorbed (bi)sulfate species are shifted linearly with increasing electrode potential, yielding Stark tuning rates () of 152.1 and 21.1 cm−1 V−1 on nm-Pt/GC(20), respectively. Along with increasing n, the Stark tuning rate of the IR band around 1200 cm−1 decreases quickly and declined to 7.6 cm−1 V−1 on nm-Pt/GC(80), while the Stark tuning rate of the IR band near 1100 cm−1 is fluctuated between 23.0 and 16.2 cm−1 V−1. It has determined that the enhancement of IR absorption of (bi)sulfate adsorbed on nanostructured Pt electrode is varied with substrate material and n, and a maximal 16-fold enhancement of the IR band near 1200 cm−1 has been measured on the nm-Pt/GC(30) electrode. The in situ FTIR studies illustrated that the adsorption of (bi)sulfate occurs mainly in the double layer potential region, and reaches a maximum around 0.80 V. The results demonstrated also that the competitive adsorption of CO and oxygen species can inhibit completely (bi)sulfate adsorption, which has evidenced a weak interaction of (bi)sulfate with nm-Pt/S(n) electrode surface.  相似文献   

20.
The electrochemical reduction of peroxycitric acid (PCA) coexisting with citric acid and hydrogen peroxide (H2O2) in the equilibrium mixture was extensively studied at a gold electrode in acetate buffer solutions containing 0.1 M Na2SO4 (pH 2.0-6.0) using cyclic and hydrodynamic voltammetric, and hydrodynamic chronocoulometric measurements. The reduction of PCA was characterized to be an irreversible, diffusion-controlled process, and the cyclic voltammetric reduction peak potential () was found to be more positive by ca. 1.0 V than that of the coexisting H2O2, e.g., the values obtained at 0.1 V s−1 for PCA and H2O2 were 0.35 and −0.35 V, respectively, vs. Ag|AgCl|KCl (sat.) at pH 3.3. The of PCA was found to depend on pH, i.e., at pH > 4.5, the plot of vs. pH gave the slope (−64 mV decade−1) which is close to the theoretical value (−59 mV decade−1) for an electrode process involving the equal number of electron and proton in the rate-determining step, while at pH < 4.5, the was almost independent of pH. The relevant electrochemical parameters, Tafel slope, number of electrons, formal potential (E0′), cathodic transfer coefficient and standard heterogeneous rate constant (k0′) for the reduction of PCA and the diffusion coefficient of PCA were determined to be ca. 100 mV decade−1, 2, 1.53 V (at pH 2.6), 0.29, 1.2 × 10−12 cm s−1 and 0.29 × 10−5 cm2 s−1, respectively, and except for E0′, the obtained values were almost independent of the solution pH. The overall mechanism of the reduction of PCA was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号