首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

2.
Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 (z = 0, 0.04) positive electrode materials were synthesized via a co-precipitation method. These materials have α-NaFeO2 () structure, as confirmed by X-ray diffraction (XRD) studies. Cation mixing in Li layer seemed to be decreased by Mg substitution as examined by Rietveld refinements of XRD data. Spherical morphologies were observed for the as-synthesized final products by scanning electron microscopy. Their electrochemical properties during charge and discharge were discussed. When magnesium ions are substituted, the initial reversible capacity reduced. However, the substitution for Mn sites in Li[Ni1/3Co1/3Mn1/3]O2 did not decrease the capacity because Mn sites substitution did not result in loss of electroactive elements in the compound. Differential scanning calorimetric studies showed the exothermic peaks of the charged electrode Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 (z = 0.04) were significantly smaller than that of Li[Ni1/3Co1/3Mn1/3]O2, which means that thermal stability was greatly improved by Mg substitution even at highly delithiated state.  相似文献   

3.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

4.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

5.
Layered Li1+x(Ni0.3Co0.4Mn0.3)O2−δ (x = 0, 0.03 and 0.06) materials were synthesized through the different calcination times using the spray-dried precursor with the molar ratio of Li/Me = 1.25 (Me = transition metals). The physical and electrochemical properties of the lithium excess and the stoichiometric materials were examined using XRD, AAS, BET and galvanostatic electrochemical method. As results, the lithium excess Li1.06(Ni0.3Co0.4Mn0.3)O2−δ could show better electrochemical properties, such as discharge capacity, capacity retention and C rate ability, than those of the stoichiometric Li1.00(Ni0.3Co0.4Mn0.3)O2−δ. In this paper, the effect of excess lithium on the electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2−δ materials will be discussed based on the experimental results of ex situ X-ray diffraction, transmission electron microscopy (TEM) and galvanostatic intermittent titration technique (GITT)  相似文献   

6.
An attempt to understand the unusual electrochemical behaviors in (1−x)LiNiO2·xLi2TiO3 (0.05≤x≤0.5), an excess initial charge capacity exceeding the oxidation of transitional metal to +4 accompanying the appearance of an irreversible initial charge plateau when x reached 0.075, was performed. The decreased charge-discharge polarization after charging to 4.6 and 4.8 V and increased columbic reversibility after charging to 4.6 V typically for x=0.1 and 0.2, in contrast to charging to 4.4 V, suggested that the excess initial charge capacity possibly did not come mainly from electrolyte decomposition; while ex situ XRD results in the sample with x=0.2 confirmed that Li+ were really extracted at the stage of the charge plateau, ruling out the possibility that electrolyte decomposition mainly accounted for the unusual electrochemical behaviors. It was inferred that the species responsible for charge compensation for the excess charge capacity must be oxygen ions in these materials, considering that Ni4+ and Ti4+ are generally impossible to be oxidized to a higher valence. Various electrochemical cycling experiments demonstrated that the sample for x=0.05 with high resistant ability to high voltage and temperature is very promising cathode material in view of observed capacity and cycleability from a viewpoint of application.  相似文献   

7.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

8.
Uniform and spherical Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ powders were synthesized via NH3 and F coordination hydroxide co-precipitation. The effect of F coordination agent on the morphology, structure and electrochemical properties of the Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ were studied. The morphology, size, and distribution of (Ni1/3Co1/3Mn1/3)(OH)(2−δ)Fδ particle diameter were improved in a shorter reaction time through the addition of F. The study suggested that the added F improves the layered characteristics of the lattice and the cyclic performance of Li(Ni1/3Co1/3Mn1/3)O2 in the voltage range of 2.8-4.6 V. The initial capacity of the Li(Ni1/3Co1/3Mn1/3)O1.96F0.04 was 178 mAh g−1, the maximum capacity was 186 mAh g−1 and the capacity after 50 cycles was 179 mAh g−1 in the voltage range of 2.8-4.6 V.  相似文献   

9.
L.X He  H.I Yoo 《Electrochimica acta》2003,48(10):1357-1366
Effect on the ionic conductivity of B-site ion (M) substitution in (Li3xLa2/3−x)1+y/2MyTi1−yO3 (M=Al, Cr) has been investigated. It has been found that partial substitution of smaller Al3+ for Ti4+ is effective to enhance the ionic conductivity of Li3xLa2/3−xTiO3. At 300 K, the maximum bulk conductivity of (1.58±0.01)×10−3 S cm−1 is observed from the composition of (Li0.39La0.54)1−y/2AlyTi1−yO3 with y=0.02 (x=0.13), that is the highest yet reported for known perovskite solutions at room temperature. The conductivity enhancement is interpreted as being due to the substitution-induced bond-strength change rather than due to bottleneck size change for Li migration, TiO6-octahedron tilting or A-site cation ordering.  相似文献   

10.
J. Jiang 《Electrochimica acta》2006,51(17):3413-3416
The properties of graphite/Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3, y = 1/12 and 1/6) Li-ion cells are reported. There is an extended plateau near 4.5 V during the first charging of the cells that corresponds to the simultaneous removal of Li and oxygen from the Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3, y = 1/12 and 1/6) electrodes. The release of this oxygen directly within a Li-ion cell has been a cause for concern. However, it was found that subsequent to O2 release, Li-ion cells delivered a high reversible positive electrode specific capacity near 250 mAh/g at C/30 between 2.5 and 4.8 V, the cells did not display increased irreversible capacity relative to counterparts having Li metal negative electrodes and the cells retained 85% of their initial capacity after 70 cycles at C/6 between 2.5 and 4.6 V. Therefore, the O2 released during the first charge does not significantly impact the electrochemical properties of graphite/Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3) lithium-ion cells.  相似文献   

11.
The Li[Li(1/3−x/3)CrxMn(2/3−2x/3)]O2 (0.15 ≤ x ≤ 0.3) cathode materials were synthesized by sol-gel process using aqueous solutions of metal acetates and citric acid as the chelating agent. The precipitate of metal citrate was dried in a vacuum oven for 10 h at 100 °C. After drying, the gel precursor was calcined at 300 °C for about 10 h. The resulted powder was ground and heated at 900 °C. The structural characterization was carried out by fitting the XRD data with Rietveld program. The samples exhibited a well defined layered structure and the unit cell parameters linearly increased with increasing chromium contents in Li[Li(1/3−x/3)CrxMn(2/3−2x/3)]O2 Surface morphology was determined by SEM and HRTEM and it is found that the cathode material consisted of highly ordered single crystalline particles with layered-hexagonal structure. Test cells were assembled and cycled in the voltage range of 2.0-4.9 V with a current density of 7.947 mA/g. Electrode with (x = 0.2) delivered a high reversible capacity of around 280 mA h/g in cycling.  相似文献   

12.
A new ferroelectric solid solution of (1 − x)Ba(Lu1/2Nb1/2)O3-xPbTiO3 (BLN-PT) (0 ≤ x ≤ 1) has been synthesized by solid state reactions. Its structure and electric properties have been studied by X-ray diffraction and di-/ferro-electric measurements. Based on the investigation, a partial solid state phase diagram of the binary BLN-PT ceramics system has been established, which exhibits a morphotropic phase boundary (MPB) region in the composition range of 0.64 ≤ x ≤ 0.68. The Curie temperature is measured to be around 250 °C in the vicinity of the MPB region, which is much higher than that of PMNT or PZNT system. The dielectric behavior has been discussed based on Curie-Weiss Law and Lorentz-type quadratic relationship. With increasing PT content, a transformation from relaxor to ferroelectric phase has been demonstrated in the solid solution system.  相似文献   

13.
Sen Zhang 《Electrochimica acta》2007,52(25):7337-7342
Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by mixing metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2, with 6% excess LiOH followed by calcinations. The (Ni1/3Co1/3Mn1/3)(OH)2 with secondary particle of about 12 μm was prepared by hydroxide co-precipitation. The tap density of the obtained Li[Ni1/3Co1/3Mn1/3]O2 powder was 2.56 ± 0.21 g cm−3. The powder was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size distribution (PSD) and galvanostatic charge-discharge cycling. The XRD pattern of Li[Ni1/3Co1/3Mn1/3]O2 revealed a well ordered hexagonal layered structure with low cation mixing. Secondary particles with size of 13-14 μm and primary particles with size of about 1 μm can be identified from the SEM observations. In the voltage range of 2.8-4.3 V, the initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 electrode was 166.6 mAh g−1, and 96.5% of the initial capacity was retained after 50 charge-discharge cycling.  相似文献   

14.
Non-spherical Li(Ni1/3Co1/3Mn1/3)O2 powders have been synthesized using a two-step drying method with 5% excess LiOH at 800 °C for 20 h. The tap-density of the powder obtained is 2.95 g cm−3. This value is remarkably higher than that of the Li(Ni1/3Co1/3Mn1/3)O2 powders obtained by other methods, which range from 1.50 g cm−3 to 2.40 g cm−3. The precursor and Li(Ni1/3Co1/3Mn1/3)O2 are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the precursor are 2+, 3+ and 4+, respectively. XRD results show that the Li(Ni1/3Co1/3Mn1/3)O2 material obtained by the two-step drying method has a well-layered structure with a small amount of cation mixing. SEM confirms that the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained by this method are uniform. The initial discharge capacity of 167 mAh g−1 is obtained between 3 V and 4.3 V at a current of 0.2 C rate. The capacity of 159 mAh g−1 is retained at the end of 30 charge-discharge cycle with a capacity retention of 95%.  相似文献   

15.
Amorphous LiCoO2 thin films were deposited on the NASICON-type glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 180 °C. The as-deposited LiCoO2 thin films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscope. All-solid-state Li/PEO18-Li (CF3SO2)2N/LATSP/LiCoO2/Au cells were fabricated using the amorphous film. The electrochemical performance of the cells was investigated by galvanostatic cycling, cyclic voltammetry, potentiostatic intermittent titration technique and electrochemical impedance spectroscopy. It was found that the amorphous LiCoO2 thin film shows a promising electrochemical performance, making it a potential application in microbatteries for microelectronic devices.  相似文献   

16.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

17.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle).  相似文献   

18.
Li2Fe1−xMnxSi04/C cathode materials were synthesized by mechanical activation-solid-state reaction. The effects of Mn-doping content, roasting temperature, soaking time and Li/Si molar ratio on the physical properties and electrochemical performance of the Li2Fe1−xMnxSi04/C composites were investigated. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), charge-discharge tests and AC impedance measurements. SEM images suggest that the morphology of the Li2Fe1−xMnxSi04/C composite is sensitive to the reaction temperature. Samples synthesized at different temperatures have different extent of agglomeration. Being charged-discharged at C/32 between 1.5 and 4.8 V, the Li2Fe0.9Mn0.1Si04/C synthesized at the optimum conditions shows good electrochemical performances with an initial discharge capacity of 158.1 mAh g−1 and a capacity retention ratio of 94.3% after 30 cycles. AC impendence investigation shows Li2Fe0.9Mn0.1SiO4/C have much lower resistance of electrode/electrolyte interface than Li2FeSiO4/C.  相似文献   

19.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

20.
Spherical (Ni0.5Mn0.5)(OH)2 with different secondary particle size (3 μm, 10 μm in diameter) was synthesized by co-precipitation method. Mixture of the prepared hydroxide and lithium hydroxide was calcined at 950 °C for 20 h in air. X-ray diffraction patterns revealed that the prepared material had a typical layered structure with space group. Spherical morphologies with mono-dispersed powders were observed by scanning electron microscopy. It was found that the layered Li[Ni0.5Mn0.5]O2 delivered an initial discharge capacity of 148 mAh g−1 (3.0-4.3 V) though the particle sizes were different. Li[Ni0.5Mn0.5]O2 having smaller particle size (3 μm) showed improved area specific impedance due to the reduced Li+ diffusion path, compared with that of Li[Ni0.5Mn0.5]O2 possessing larger particle size (10 μm). Although the Li[Ni0.5Mn0.5]O2 (3 μm) was electrochemically delithiated to Li0.39[Ni0.5Mn0.5]O2, the resulting exothermic onset temperature was around 295 °C, of which the value is significantly higher than that of highly delithiated Li1−δCoO2 (∼180 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号