首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al2O3-Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 μm on steel support and an average of nano Al2O3 particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 μm/year) and a little bit bigger in 0.5 M sodium chloride (5.03 μm/year).  相似文献   

2.
To improve the resistance of the hydrotransport pipe steel to corrosion and erosion in oil sand slurry, a Ni-Co-Al2O3 composite coating was fabricated by electrolytic deposition on X-65 pipe steel substrate. Potentiodynamic polarization curve and electrochemical impedance measurements show that the deposited coating significantly improves the corrosion resistance of the steel in water-oil-sand solution that simulates the chemistry of oil sand slurry. The corrosion resistance of the coating increases with the increasing Al2O3 particle concentration in electrolyte, cathodic current density, electrode rotating speed and temperature. However, a maximum value of corrosion resistance as a function of the depositing parameters is observed, indicating that the optimal electrodepositing parameters and operating conditions are essential to the maximization of the corrosion resistance of the coated steel in oil sand slurry. The optimal depositing conditions are suggested in the given system. The morphology, structure and composition of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The Ni-Co-Al2O3 composite coating develops a compact, uniform, nodular structure with an average thickness of 50-200 microns. The Al2O3 amount in the coating increases with the increasing Al2O3 concentration in electrolyte, which also enhances the co-deposition of Ni and Co. The micro-hardness and wear resistance of the composite coatings are much higher than the steel substrate and increase with the increasing Al2O3 particle amount in the coating.  相似文献   

3.
Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come as a result of molten salt effect on the coating–gas interface. Hot corrosion behavior of three types of plasma sprayed TBCs was evaluated: usual CSZ, layer composite of CSZ/Micro Al2O3 and layer composite of CSZ/Nano Al2O3 in which Al2O3 was as a topcoat on CSZ layer. Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt% Na2SO4+55 wt% V2O5 molten salt at 1050 °C for 40 h. The graded microstructure of the coatings was examined using scanning electron microscope (SEM) and X-ray diffractometer (XRD) before and after hot corrosion test. The results showed that no damage and hot corrosion products was found on the surface of CSZ/Nano Al2O3 coating and monoclinic ZrO2 fraction was lower in CSZ/Micro Al2O3 coating in comparison with usual CSZ. reaction of molten salts with stabilizers of zirconia (Y2O3 and CeO2) that accompanied by formation of monoclinic zirconia, irregular shape crystals of YVO4, CeVO4 and semi-cubic crystals of CeO2 as hot corrosion products, caused the degradation of CSZ coating in usual CSZ and CSZ/Micro Al2O3 coating.  相似文献   

4.
This study focuses on the effects of powder size and Ni–Al bonding layer on the electrochemical behaviour of plasma-sprayed Al2O3-13% TiO2 coating in fresh tropical seawater. The presence of the metallic bonding layer reduces the coating porosity and increases the surface roughness for both microparticle and nanoparticle coatings. The nanoparticle exhibits better corrosion rate of 1.9×10−6 mmpy compared to the microparticle coating, with a corrosion rate of 3.05×10−6 mmpy. However, the presence of the metallic bonding layer increases the corrosion rate for both micro and nanoparticle coatings. The corrosion mechanism for the coating with and without the metallic bonding layer is discussed in detail.  相似文献   

5.
The aim of this work was studying the effects of addition of Al2O3 nanoparticles on the anticorrosion performance of an epoxy/polyamide coating applied on the AA-1050 metal substrate. For this purpose, the epoxy nanocomposites were prepared using 1, 2.5 and 3.5 (w/w) pre-dispersed surface modified Al2O3 nanoparticles. Field-emission electron microscope (FE-SEM) and ultraviolet–visible (UV–Vis) techniques were utilized in order to evaluate the nanoparticles dispersion in the epoxy coating matrix. The anticorrosion performance of the nanocomposites was studied by electrochemical impedance spectroscopy (EIS) (in 3.5 wt% NaCl solution for 135 days immersion) and salt spray test for 1000 h. The coating resistance against hydrolytic degradation was also studied by optical microscope and Fourier-transform infrared spectroscopy (FTIR). Results obtained from FE-SEM micrographs and UV–visible spectra showed that the nanoparticles dispersed in the coating matrix uniformly with particle size less than 100 nm even at high loadings. Results revealed that nano-Al2O3 particles could significantly improve the corrosion resistance of the epoxy coating. Nanoparticles reduced water permeability of the coating and improved its resistance against hydrolytic degradation.  相似文献   

6.
Corrosion resistance properties of electroless nickel composite coatings   总被引:1,自引:0,他引:1  
Y.S Huang  X.T Zeng  X.F Hu 《Electrochimica acta》2004,49(25):4313-4319
Electroless nickel (EN) composite coatings incorporated with PTFE and/or SiC particles demonstrated significantly improved mechanical and tribological properties as well as low surface energy which are desired for anti-sticking and wear resistant applications. The corrosion resistance of these composite coatings, however, has not been systematically studied and compared. This work aimed to investigate the corrosion characteristics of EN composite coatings using electrochemical measurements which include open circuit potential (OCP), electrochemical impedance spectroscopy and potentiodynamic test. The effects of the co-deposited particles on corrosion behavior of the coatings in 1.0 N H2SO4 and 3% NaCl media were investigated. The surface autocatalytic properties and the post-heat-treatment on coating corrosion resistance were also discussed. The results showed that both EN and EN composite coatings demonstrated significant improvement of corrosion resistance in both acidic and salty atmosphere. Ni striking substantially enhanced the corrosion resistance due to the improvement of the surface autocatalytic properties and homogeneity. Proper post-heat-treatment significantly improves the coating density and structure, giving rise to enhanced corrosion resistance.  相似文献   

7.
Al2O3 and Ti-doped Al2O3 nanocomposite ceramic coatings were prepared by using a sol-gel dip-coating process. Corrosion and wear resistance of Al2O3 ceramic coatings in relation to Ti amount were carried out using pin-on-disk tribotester, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Surface characterizations before and after the corrosion and wear tests were investigated by the scanning electron microscope (SEM) and X-ray diffraction (XRD) and hardness analysis. The results of corrosion and wear tests exhibited that the corrosion and wear resistance of nanocomposite ceramic coatings became better than uncoated samples. Also, corrosion and wear resistance of nanocomposite ceramic coatings improved with Ti doping content increased.  相似文献   

8.
Alumina (Al2O3) coatings of different thickness were deposited on OT59 brass substrate (BS) using the metal organic chemical vapour deposition (MOCVD) technique to evaluate the corrosion performance by EIS measurements. The used precursor was dimethyl-aluminium-isopropoxide. Electrochemical characterizations of the deposited films were performed in a standard very aggressive acidic solution (aerated 1N H2SO4 at 25 °C up to 168 h of immersion time) by means of direct current method (Tafel curves) and electrochemical impedance spectroscopy (EIS). The Rutherford backscattering spectroscopy (RBS) indicated that the films are very pure with the correct Al2O3 stoichiometry, while the IR absorption spectra showed that the films did not contain any OH groups. The surface film morphology was investigated by atomic force microscopy (AFM) and displayed a globular texture. The films were very smooth, with a maximum root mean square roughness, for example, of 14 nm for a 0.96 μm thick coating. The EIS data confirmed, as expected, that a 2.40 μm Al2O3 layer ensures the best corrosion protection after 168 h of immersion in the very acidic environment used.  相似文献   

9.
The Cr2O3 nanoparticles were modified with 3-amino propyl trimethoxy silane in order to obtain proper dispersion and increment compatibility with the polyurethane coating matrix. The nanocomposites prepared were applied on the St-37 steel substrates. The existence of 3-amino propyl trimethoxy silane on the surface of the nanoparticles was investigated by Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). Dispersion of the surface modified particles in the polyurethane coating matrix was studied by a field emission-scanning electron microscope (FE-SEM). The electrochemical impedance spectroscopy (EIS) and salt spray tests were employed in order to evaluate the corrosion resistance of the polyurethane coatings. Polarization test was done in order to investigate the corrosion inhibition properties of the Cr2O3 nanoparticle on the steel surface in 3.5 wt.% NaCl solution. The adhesion strengths of the coatings were evaluated by pull-off adhesion tester before and after 120 days immersion in 3.5 wt.% NaCl solution. FT-IR and TGA analyses revealed that surface modification of the nanoparticles with 0.43 silane/5 g pigment resulted in the greatest amount of silane grafting on the surface of particles. Results obtained from FE-SEM analysis showed that the surface modified nanoparticles dispersed in the coating matrix properly. Results obtained from EIS and salt spray analyses revealed that the surface modified particles enhanced the corrosion protection performance of the polyurethane coating considerably. The improvement was more pronounced for the coating reinforced with 0.43 g silane/5 g pigment. Moreover, the adhesion loss decreased in the presence of surface modified nanoparticles with 0.43 silane/5 g pigment.  相似文献   

10.
In the present study, different types of 75% Cr3C2-25% NiCr coatings were applied on a steel substrate by means of high velocity oxygen fuel spraying (HVOF), and studied using ac and dc electrochemical measurements in an aerated and unstirred 0.5 M H2SO4 solution. Structural characterization was determined before and after electrochemical tests. Differences between all sprayed systems are related to the gun transverse speed and number of deposited layers, which strongly affected the electrochemical characteristics of the coated steels. The coating obtained with a higher torch speed showed better resistance against corrosion. The electrochemical impedance results were analyzed using an equivalent circuit where porosity of the coatings and substrate oxidation were considered.  相似文献   

11.
LiNi1/3Co1/3Mn1/3O2 cathode materials have been coated with Al2O3 nano-particles using sol-gel processing to improve its electrochemical properties. The X-ray diffraction (XRD) pattern of the as-prepared Al2O3 nano-particles was indexed to the cubic structure of the γ-Al2O3 phase and had an average size of ∼4 nm. The XRD showed that the structure of LiNi1/3Co1/3Mn1/3O2 was not affected by the Al2O3 coating. However, the Al2O3 coatings on LiNi1/3Co1/3Mn1/3O2 improved the cyclic life performance and rate capability without decreasing its initial discharge capacity. These electrochemical properties were also compared with those of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material. The electrochemical impedance spectroscopy (EIS) was studied to understand the enhanced electrochemical properties of the Al2O3-coated LiNi1/3Co1/3Mn1/3O2 compared to uncoated LiNi1/3Co1/3Mn1/3O2.  相似文献   

12.
Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO2 thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO2 sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO2. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.  相似文献   

13.
This article describes the effect of the addition of different phases of alumina particles on the properties of electrodeposited Ni–Al2O3 composite coatings. The corrosion- and wear-resistant properties of Ni–Al2O3 composite coatings electrodeposited from a nickel sulfamate bath containing (i) alpha-alumina particles (Ni–Al2O3-1), (ii) gamma-alumina particles (Ni–Al2O3-2), and (iii) mixture of alpha, gamma, and delta alumina particles (Ni–Al2O3-3) have been studied. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies showed superior corrosion resistance of Ni–Al2O3-2 composite coatings compared with other two coatings. The SEM images and EDAX spectra also corroborated well with the observed corrosion results. The pin-on-disk wear studies showed improved wear resistance of Ni–Al2O3-1 composite coating containing alpha alumina compared with other two coatings. The transfer of material from the pin onto the disk was evident from the optical microscopy images of the wear tracks and Raman spectra of the wear track. This study shows that the addition of pure gamma-alumina particles enhances the corrosion resistance, and that pure alpha-alumina particles enhance the wear resistance of Ni composite coatings to a greater extent.  相似文献   

14.
In this study, we explored the phase compositions and morphologies of the ceramic coatings from different aluminum sources (aluminum isopropoxide, aluminum nitrate, or a mixture of the two) prepared using cathode plasma electrolytic deposition (CPED) onto AZ31 magnesium alloys. Scanning electron microscopy and X-ray diffraction analyses of these coatings indicate that the deposited ceramic made from aluminum isopropoxide was composed of γ-Al2O3 whereas the one made from aluminum nitrate was composed of MgA12O4, and that the former was more compact and uniform than the latter. A composite coating was prepared using epoxy resin as a protective layer that sealed the micropores on the CPED coating, thereby further improving its anticorrosion property. The elemental distribution of the cross-section of the composite coating was examined via energy dispersive spectroscopy. Corrosion resistance was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy in a 3.5?wt% NaCl medium, and a salt spray test. The results indicate that the corrosion protection property of the Al2O3/epoxy resin coating of the magnesium alloy was better than that of the single Al2O3 coating. A cross-cut test revealed that the adhesion of the Al2O3/epoxy resin composite coating to the magnesium alloy surface was better than that of the single epoxy resin coating. The approach presented herein provides an attractive way to modify the surface of magnesium alloys to improve anticorrosion.  相似文献   

15.
Weiwei Chen 《Electrochimica acta》2010,55(22):6865-9102
Novel sol-enhanced Ni-TiO2 nano-composite coatings were electroplated by adding a transparent TiO2 sol into the traditional electroplating Ni solution. It was found that the structure, mechanical properties and corrosion resistance of the nano-composite coatings were largely determined by the sol concentration. The higher sol concentration in the plating electrolyte led to a higher content of TiO2 nano-particles in the coating matrix. The coating prepared at the sol concentration of 12.5 mL/L had the best microhardness, wear resistance and corrosion resistance. Adding excessive sol to the electrolyte changed the surface microstructure, caused cracking on the coating surface and deteriorated the properties. It was demonstrated that the corrosion resistance of the composite coatings is determined by two factors: surface microstructure and incorporation of TiO2 nano-particles.  相似文献   

16.
Hong Yun 《Electrochimica acta》2007,52(24):6679-6685
Nano-titania coatings doped with anions of nitrogen, sulfur and chlorine have been supplied on the surface of 316L stainless steel by a sol-gel process and dip-coating technique. The measurements of XRD, SEM, ATR-IR, Raman and XPS were carried out to characterize the chemical composition and structure for the prepared samples. The corrosion performances of the coating in 0.5 M NaCl were evaluated by electrochemical impedance spectroscopy (EIS) and polarization measurements. According to the measurements of EIS and electrochemical polarization, the N-modified TiO2 nano-coatings show a highest corrosion resistance among the prepared coatings. It is revealed, from the SEM, XRD and Raman characterizations, that the surface of N-modified TiO2 nano-coatings are more compact and uniform, relatively well-crystallized and able to act as an optimal barrier layer to metallic substrates. The XPS analysis confirms the presence of low concentration of N element in two forms, atomic β-N (interstitial state) and chemisorbed γ-N2 on the surface of TiO2 nano-coatings. It is suggested that the addition of nitrogen is beneficial to improve the compact structure and enhance the hydrophobic property.  相似文献   

17.
Lifeng Zhang 《Fuel》2009,88(3):511-24
Nickel-based catalysts supported on Al2O3 · SiO2 were prepared with modification of the second metal involving La, Co, Cu, Zr or Y, of which the catalytic behaviors were assessed in the ethanol steam reforming reaction. Activity test indicated that addition of La resulted in higher selectivity of hydrogen and lower selectivity of carbon monoxide, compared with Co-doped nickel catalyst. Influences of lanthanum amounts on catalytic performance were studied over 30NixLa/Al2O3 · SiO2 (x = 5, 10, 15), and characterizations by XRD, TPR and XPS indicated that low amount of lanthanum additives (5%) was superior to inhibit the crystal growth of nickel as well as beneficial to the reduction of nickel oxide. Finally 100 h test for the optimal catalyst 30Ni5La/Al2O3 · SiO2 indicated its good long-term stability to provide high hydrogen selectivity and low carbon monoxide formation, as well as good resistance to coke deposition at low temperature.  相似文献   

18.
The aim of this study is to characterize the electrochemical corrosion resistance of Al-Ni alloy samples which were directionally solidified under upward unsteady state heat flow conditions. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to analyze the corrosion resistance in a dilute 0.05 M NaCl solution at 25 °C. Equivalent circuit analyses were also conducted. It was found that microstructural features such as the dendritic arrangement and the distribution of Al3Ni intermetallic particles have important roles on both the resulting pitting potential and the general corrosion resistance of Al-Ni alloys.  相似文献   

19.
An Al2O3-ZrO2 support was prepared by grafting a zirconium precursor onto the surface of commercial γ-Al2O3. A physical mixture of Al2O3-ZrO2 was also prepared for the purpose of comparison. Ni/Al2O3-ZrO2 catalysts were then prepared by an impregnation method, and were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect ZrO2 and preparation method of Al2O3-ZrO2 on the performance of supported nickel catalysts in the steam reforming of LNG was investigated. The Al2O3-ZrO2 prepared by a grafting method was more efficient as a support for nickel catalyst than the physical mixture of Al2O3-ZrO2 in the hydrogen production by steam reforming of LNG. The well-developed tetragonal phase of ZrO2 and the high dispersion of ZrO2 on the surface of γ-Al2O3 were responsible for the enhanced catalytic performance of Ni/Al2O3-ZrO2 prepared by way of a grafting method.  相似文献   

20.
Al2O3/Ni nanocomposites were prepared by spark plasma sintering (SPS) using reaction sintering method and the mechanical properties of the obtained nanocomposites are reported. The starting materials of Al2O3–NiO solid solution were synthesized from aluminum sulfate and nickel sulfate. These Al2O3–NiO powders were changed into Al2O3 and Ni phases during sintering process. The obtained nanocomposites showed high relative densities (>98%). SEM micrographs showed homogeneously dispersed Ni grains in the matrix. The 3-point strength and the fracture toughness of the composites significantly improved from 450 MPa in the monolithic α-Al2O3 to 766 MPa in the 10 mol% (2.8 vol.%) Ni nanocomposite and from 3.7 to 5.6 MPa m1/2 in 13 mol% (3.7 vol.%) Ni nanocomposite. On the other hand, Young's modulus and Vickers hardness of the nanocomposites were mostly same as those of the monolithic α-Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号