首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A temperature-controlled and pressure-controlled coaxial dielectric barrier discharge(DBD) reactor was developed to decouple the thermal and kinetic effects of radio frequency(RF) discharge on methane conversion,and further to compare the kinetic behaviors of the mechanistically similar reactions of methane conversion with O_2 and CO_2 additives. A kinetic mechanism for RF plasma assisted methane conversion was assembled. The formation of products in the RF plasma reactor was measured with Gas Chromatography(GC–TCD) and the data were used to validate the kinetic model. The experimental and computational results showed the different kinetic roles of carbon dioxide and oxygen additives in methane conversion, due to the different dissociation and ionization energy of the two additive gases, as well as the thus produced electron energy distribution function(EEDF). Fuel oxidation by plasma generated O, O(~1 D), O_2(a~1Δg), O_2(b~1Σ_g~+) and O+in partial oxidation of methane was observed essential for methane consumption, which resulted in an increase in methane conversion rate,compared to pure methane pyrolysis and dry reforming of methane with CO_2 additive. It was also found that dry reforming of methane with CO_2 was by far the easier to produce the syngas as well as C_2 hydrocarbon species,due to the weak oxidation ability of CO_2 and also the significant deposition of the electron energy on CH_4 dissociation in a dry reforming discharge mixture. This kinetic study produced comparative data to demonstrate the contribution of CO_2/O_2 additive in non-equilibrium plasma assisted methane conversion.  相似文献   

2.
Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and hydrolysis were 75.2 kJ·mol-1 and 40.4 kJ·mol-1 respectively. The observed activation energy of PFA decomposition was 95.4 kJ·mol-1. The experi-mental results indicated that the decomposition of PFA was liable to occur even at the ambient temperature. Both the spontaneous decomposition and the radical-introduced decomposition contributed to the decomposition of PFA.  相似文献   

3.
喹啉和异喹啉热解机理的密度泛函理论研究   总被引:1,自引:1,他引:0       下载免费PDF全文
The pyrolysis mechanisms of quinoline and isoquinoline were investigated using the density functional theory of quantum chemistry, including eight reaction paths and a common tautomeric intermediate 1-indene imine. It is concluded that the conformational tautomerism of the intermediate decides the pyrolysis products (C6H6, HC C C N, C6H5C N and HC CH) to be the same, and also decides the total disappearance rates of the reactants to be the same, for both original reactants quinoline and isoquinoline during the pyrolysis reaction. The results indicate that the intramolecular hydrogen migration is an important reaction step, which often appears in the paths of the pyrolysis mechanism. The activation energies of the rate determining steps are obtained. The calculated results are in good agreement with the experimental results.  相似文献   

4.
The free-radical growth mechanisms for the formation of polycyclic arenes (PCAs) were constructed based on the block unit of benzene, and were calculated by the quantum chemistry PM3 method. Two kinds of reaction paths are proposed and discussed. The calculation results show that the formation of PCAs is only controlled by the elimination of H atom from benzene, and the corresponding activation energy is 307.60 kJ•mol-1. H2 is only the ef-fluent gas in our proposed reaction mechanism, and the calculation results are in accord with the experimental facts.  相似文献   

5.
Mass transfer usually affects the rate of chemical reactions in coal.The effect of internal diffusion on char gasification with CO2 in the temperature range from 1123 K to 1273 K was investigated via thermo-gravimetric analysis and assessment of char morphology features.The results revealed that the effect of internal diffusion on the initial reaction rate was more significant with an increase of particle size,due to the concentration gradient of the gasification agent within the solid particles.In the early stage of gasification,the generation of new micropores and the opening of closed pores led to an increase in specific surface area.As the reaction proceeded,the openings were gradually expanded and the specific surface area continued to increase.However,with further reaction,disappearance of edge pores,melting and collapse of the pore structure led to a decrease in specific surface area.The intrinsic activation energy and reaction order based on the nth-order model were 157.67 kJ?mol?1 and 0.36,respectively.Thus,temperature zones corresponding to chemical reaction and diffusion control were identified.Moreover,the calculated effectiveness factor provided a quantitative estimation of internal diffusion in the initial stage.  相似文献   

6.
The partial oxidation of methane under periodic operation over Ni/γ-Al2O3 catalyst was investigated in a Pd-membrane reactor.The effects of key parameters such as the inlet composition and the sweeping gas on methane conversion and the hydrogen recovery are numerically established with two periodic input functions.In order to analyze the effect of the inputs modulation,the reaction was performed under low steam to methane ratio at a moderate temperature and pressure.It was obtained that to achieve process intensification is to operate the process in a periodic way.The main results show that the periodic input functions can improve the performance of the process compared to the optimal steady state operation.Moreover,there is an optimum amplitude of manipulated inputs leads to a maximum of hydrogen recovery.It is noteworthy that the comparison between the predicted performance via the sinusoidal and the square ways show that the better average performance was obtained with the square way.  相似文献   

7.
This study investigated the hydrogenation of silicon tetrachloride (SIC14) in microwave plasma. A new launcher of argon (Ar) and hydrogen (Ha) plasma was introduced to produce a non-thermodynamic equilibrium activation plasma. The plasma state exhibited a characteristic temperature related to the equilibrium constant, which was termed "Reactive Temperature" in this study. Thus, the hydrogenation of SIC14 in the plasma could easily be handled with high conversion ratio and very high selectivity to trichlorosilane (SiHC13). The effects of SiC14/Ar and H2/Ar ratios on the conversion were also investigated using a mathematical model developed to determine the op- timum experimental parameters. The highest hydrogenation conversion ratio was produced at a H2/SiCl4 molar ratio of 1, with mixtures of SICl4 and H2 to Ar molar ratio of 1.2 to 1.4. In this plasma, the special system pressure and incident power were required for the highest energy efficiency of hydrogenating SIC14, while the optimum system pressure varies from 26.6 to 40 kPa depending on input power, and the optimum feed gas (He and SiCI4) molar en- ergy input was about 350 kJ. mo1-1.  相似文献   

8.
The kinetics for production of ethyl levulinate from glucose in ethanol medium was investigated. The experiments were performed in various temperatures (433-473 K) and initial glucose concentrations (0.056-0.168 mol·L-1) with extremely low sulfuric acid as the catalyst. The results show that higher temperature can improve the conversion of glucose to ethyl levulinate, with higher yield of ethyl levulinate (44.79%, by mole) obtained at 473 K for 210 min. The kinetics follows a simplified first-order kinetic model. For the main and side reactions, the values of activation energy are 122.64 and 70.97 kJ·mo1-1, and the reaction orders are 0.985 and 0.998, respectively.  相似文献   

9.
The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.  相似文献   

10.
The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation energy, relative amount of harmful pollutant like sulphur containing gases have been investigated by thermogravimetry in steam gasification under temperature 750℃ to 950℃ at ambient pressure for three high-metarnorphous anthracites (Longyan, Fenghai and Youxia coals in Fujian Province). The mixed catalyst of 3%Ca+5%Na-BL increases greatly the carbon conversion and gasification rate constant by accelerating the gasification reaction C+H2O→CO+H2 due to presence of alkali surfacecompounds [COM], [CO2M] and exchanged calcium phenolate and calcium carboxylate (-COO)2. By adding CaCO3 into BL catalyst in gasification, in addition to improving the catalyst function and enhancing the carbon conversion, the effective desulphurization is also achieved, but the better operating temperature should be below 900℃. The homogenous and shrinking core models can be successfully employed to correlate the relations between the conversion and the gasification .time .and to estimate the reaction rate constant, The reaction acUvaUon energy and pre-exponential factor are estimated and the activation energy for mixed catalyst is in a range of 98.72-166.92 kJ·mol^-1, much less than 177.50-196.46 kJ·mol^-1 for non-catalytic steam gasification for three experimental coals.  相似文献   

11.
等离子体技术在天然气化工中的应用   总被引:13,自引:2,他引:11       下载免费PDF全文
论述了热等离子体裂解天然气制乙炔和冷等离子体促进天然气转化的研究概况 ,着重从反应过程、反应器、等离子体与催化剂的协同效应、反应机理和动力学方面评述了国内外等离子体技术在天然气化工中利用的研究进展和发展趋势 .  相似文献   

12.
This review provides a brief overview of iron-catalyzed C−C bond forming reactions via heteroatom-assisted C−H bond activation, which have been extensively developed in the last decade. Three major types of reactions are discussed, namely, (1) C−H activation/C−C coupling using organometallic reagents under oxidative conditions, (2) C−H activation/C−C coupling using organic electrophiles under redox-neutral conditions, and (3) C−H activation/C−C coupling using unsaturated hydrocarbons under redox-neutral or oxidative conditions.  相似文献   

13.
王保伟  许根慧  孙洪伟 《化学工程》2003,31(2):28-32,54
利用模拟电荷法原理计算了电场增强催化甲烷合成碳二烃反应区的电场强度和能量分布 ,结果表明非对称电场具有不均匀能量分布特性 ,场域中电极端部所提供的能量最高为 0 .3 6J/mm3,其值大于甲烷的电离能0 .0 5 47J/mm3,使处于该区域的甲烷分子解离 ,进而引发连锁式自由基反应  相似文献   

14.
电场增强低温等离子催化合成C_2烃   总被引:4,自引:1,他引:4       下载免费PDF全文
引 言目前 ,将甲烷直接转化为乙烷、乙烯、乙炔等碳二烃的主要方法有常规催化氧化偶联、膜催化、电化学反应、微波热裂解和等离子体反应[1] .大多数甲烷直接转化主要集中在氧化偶联反应 ,如催化转化甲烷和氧气合成乙烷和水 ,乙烷进一步生成乙烯和少量高碳烃 .生成的烃类 (乙烷、乙烯、乙炔和高碳烃 )常被称为C2 +.因为乙烯的市场需求大和价格高 ,所以乙烯是主要的目的产物 .除碳二烃外 ,还常易生成CO和CO2 .这不仅减少碳二烃的生成 ,而且是强放热反应 ,移出反应热是工业生产中很困难的工程问题 ,不利于反应进行 .甲烷偶联反应的目标是…  相似文献   

15.
The reaction mechanism of the gas-phase Pt atom with C(3)H(8) has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C(3)H(8) reaction, the major and minor reaction channels lead to PtC(3)H(6) + H(2) and PtCH(2) + C(2)H(6), respectively, whereas the possibility to form products PtC(2)H(4) + CH(4) is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC(3)H(6) + H(2), involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔE(≠) (int), which is the actual interaction energy between the deformed reactants in the transition state.  相似文献   

16.
The activation of C–H bonds in different hydrocarbons on the surfaces of metal oxide and metal catalysts is considered. On oxides, it appears that the initial activation may occur through either homolytic or heterolytic scission of the C–H bond, but the reaction is surface-catalysed. The activation of methane requires highly basic sites which are susceptible to severe poisoning by carbon dioxide. With metal surfaces, the extent of oxidation of the surface can strongly affect the oxidation activity. For rhodium catalysts, it is shown that the intrinsic activity for methane combustion is high. However, rhodium is strongly deactivated under oxidising conditions when alumina is used as the support: deactivation is not observed when the support is zirconia. Transient effects on the activity of an alumina-supported palladium catalyst are reported and these show that the steady state is not easily established. Water severely inhibits the methane combustion reaction on palladium, and chlorine and sulphur dioxide are strong poisons. In contrast, for the combustion of propane on alumina-supported platinum catalysts, sulphur dioxide is a significant promoter of the reaction.  相似文献   

17.
综述了不同结构离子液体对Diels-Alder反应的影响,总结了大量国内外有关离子液体中Diels-Alder反应. 分别从极性、酸性和黏度的角度分析了离子液体结构变化对Diels-Alder反应产物选择性或反应速率的影响. 讨论了离子液体中所能形成的氢键种类、咪唑类阳离子C(2)位取代情况、离子液体的Lewis酸性或Br?nsted酸性、离子液体黏度和反应体系黏度等因素的影响. 采用量子化学密度泛函理论计算了反应活化能、反应物的亲电性和过渡态C?C键长. 结果表明,离子液体的独特结构能降低反应活化能,同时增加反应过程中成键的不协同性. 指出未来的发展方向是通过对离子液体物理性质更深入的研究,基于反应机理合成功能化离子液体,进一步优化反应,发展新型、高效、绿色的Diels-Alder反应,从而扩大其应用.  相似文献   

18.
通过密度泛函理论(Density Functional Theory, DFT)中的B3LYP-D3/6-31G(d,p)方法研究二氧化氮(NO2)、三氧化硫(SO3)氧化聚苯硫醚(Polyphenylene Sulfide, PPS)生成亚砜与砜结构的过渡态,并使用内禀反应坐标(Intrinsic Reaction Coordinate, IRC)确认其连接的反应物和产物,考察了PPS被氧化的反应路径,指出反应中分子几何结构与原子电荷的改变,揭示了NO2, SO3 氧化PPS滤料的微观机理。在此基础上,进一步计算不同温度下PPS氧化过程中的自由能垒,通过反应速率常数与半衰期定量比较NO2, SO3氧化PPS的能力。结果表明,在180~220℃范围内,SO3氧化PPS生成亚砜的反应速率常数是NO2的107倍;SO3氧化亚砜结构生成砜结构的反应速率常数是NO2的104倍,即SO3对于PPS分子链上S原子的氧化能力远强于NO2;在实际环境中NO2除了直接氧化PPS外,还可能存在能垒更低的反应路径。  相似文献   

19.
In an effort to augment or displace petroleum as a source of liquid fuels and chemicals, researchers are seeking lower cost technologies that convert natural gas (largely methane) to products such as methanol. Current methane to methanol technologies based on highly optimized, indirect, high-temperature chemistry (>800 °C) are prohibitively expensive. A new generation of catalysts is needed to rapidly convert methane and O(2) (ideally as air) directly to methanol (or other liquid hydrocarbons) at lower temperatures (~250 °C) and with high selectivity. Our approach is based on the reaction between CH bonds of hydrocarbons (RH) and transition metal complexes, L(n)M-X, to generate activated L(n)M-R intermediates while avoiding the formation of free radicals or carbocations. We have focused on the incorporation of this reaction into catalytic cycles by integrating the activation of the CH bond with the functionalization of L(n)M-R to generate the desired product and regenerate the L(n)M-X complex. To avoid free-radical reactions possible with the direct use of O(2), our approach is based on the use of air-recyclable oxidants. In addition, the solvent serves several roles including protection of the product, generation of highly active catalysts, and in some cases, as the air-regenerable oxidant. We postulate that there could be three distinct classes of catalyst/oxidant/solvent systems. The established electrophilic class combines electron-poor catalysts in acidic solvents that conceptually react by net removal of electrons from the bonding orbitals of the CH bond. The solvent protects the CH(3)OH by conversion to more electron-poor [CH(3)OH(2)](+) or the ester and also increases the electrophilicity of the catalyst by ligand protonation. The nucleophilic class matches electron-rich catalysts with basic solvents and conceptually reacts by net donation of electrons to the antibonding orbitals of the CH bond. In this case, the solvent could protect the CH(3)OH by deprotonation to the more electron-rich [CH(3)O](-) and increases the nucleophilicity of the catalysts by ligand deprotonation. The third grouping involves ambiphilic catalysts that can conceptually react with both the HOMO and LUMO of the CH bond and would typically involve neutral reaction solvents. We call this continuum base- or acid-modulated (BAM) catalysis. In this Account, we describe our efforts to design catalysts following these general principles. We have had the most success with designing electrophilic systems, but unfortunately, the essential role of the acidic solvent also led to catalyst inhibition by CH(3)OH above ~1 M. The ambiphilic catalysts reduced this product inhibition but were too slow and inefficient. To date, we have designed new base-assisted CH activation and L(n)M-R fuctionalization reactions and are working to integrate these into a complete, working catalytic cycle. Although we have yet to design a system that could supplant commercial processes, continued exploration of the BAM catalysis continuum may lead to new systems that will succeed in addressing this valuable goal.  相似文献   

20.
The pulse corona plasma has been used as an activation method for reaction of methane and carbon dioxide, the product was C2 hydrocarbons and by-products were CO and H2. Methane conversion and the yield of C2 hydrocarbons were affected by the carbon dioxide concentration in the feed. The conversion of methane increased with increasing carbon dioxide concentration in the feed whereas the yield of C2 hydrocarbons decreased. The synergism of La2O3/γ-Al2O3 and plasma gave methane conversion of 24.9% and C2 hydrocarbons yield of 18.1% were obtained at the power input of plasma was 30 W. The distribution of C2 hydrocarbons changed by using Pd-La2O3/γ-Al2O3 catalyst, the major C2 product was ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号