首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 2 毫秒
1.
Selective catalytic oxidation (SCO) of ammonia was carried out over Cu-Mn compounds catalysts modified with trivalent rare earth oxide Ce2O3 and La2O3 respectively. TiO2 was used as support and different ratio of O2 were tested in order to find an appropriate O2 concentration (vol.%), and the results showed that 1%O2 (vol.%) was propitious to SCO of ammonia. The effects of the two rare earth oxides modified catalysts Ce2O3-Cu-Mn/TiO2 and La2O3-Cu-Mn/TiO2 on the catalytic activity and selectivity of ammonia oxidation were investigated under the reaction condition of 500 ppm ammonia, 1%O2 (vol.%), at the temperature from 125 to 250 °C. The results revealed the beneficial role of Ce2O3 and La2O3 in catalytic activity at low temperature and lean oxygen concentration, while the modification with Ce2O3 and La2O3 led to the negative influence on N2 selectivity. For the catalysts modified with Ce showed lower NO and N2O selectivity than the catalysts modified with La, then the effects of different Ce loadings on catalytic activity and selectivity were also considered, in combination with catalysts preparation methods, which include incipient wet impregnation, sol-gel method and co-precipitation. Results revealed that the catalysts prepared by sol-gel method obtained preferable catalytic activity compared with the others, reaching 99% ammonia at 200 °C, whereas 96% NO was detected. It also indicated that different catalyst preparation method significantly determined production distribution.  相似文献   

2.
The manufacture,physical characterization,environmental applications and cytotoxicity properties of nanocomposites consisting of CuO/CeO2 nano-rare earth composite materials prepared using the coprecipitation method at molar ratio of 6:4 with aqueous solutions of copper nitrate and cerium nitrate were reported.The performance of the selective catalytic oxidation of ammonia to N2(NH3-SCO) over a CuO/CeO2 nano-rare earth composite materials in a tubular fixed-bed reactor(TFBR) at temperatures from 423 to 673 K in the presence of oxygen was elucidated.The catalytic redox behavior was determined by cyclic voltammetry(CV).The nanocomposite particles were characterized by TEM,with a tiny particle size around 10 nm with high dispersion phenomena.Further,cell cytotoxicity and the percentage cell survival were determined by using 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetra-zolium(MTS) assay on human lung MRC-5 cell line.Experimental results showed that no apparent cytotoxicity was observed when the MRC-5 was exposed to the CuO/CeO2 nanocomposite materials.  相似文献   

3.
A citric acid complex method was employed to prepare Ce/Ni mixed oxides with various Ce/Ni ratios useful for selective oxidation methane to syngas in the absence of gaseous oxygen,and the catalytic activity measurement was investigated in a fixed bed reactor at 800 oC.The prepared oxygen carriers were characterized by various characterization techniques such as TG-DSC,XRD and TPR.The results of TG-DSC indicated that the Ce1-xNixO2 precursor generated a stable phase after the heat-treatment at temperatures above 800 oC.The XRD characterization suggested that some Ce-Ni solid solution was formed when Ni2+ ions was incorporated into the lattice of CeO2,and it led to the generation of O-vacancy which could improve the oxygen mobility in the lattice of oxygen carriers.It was found that Ce0.8Ni0.2O2 gave the highest activity in the selective oxidation methane to syngas reaction,and the average methane conversion,CO and H2 selectivity reached to 82.31%,82.41% and 87.64%,respectively.The reason could be not only attributed to the fitting amount of NiO dispersed on the CeO2 surface and bulk but also to actual lattice oxygen amount increased in oxygen carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号