首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT

The nanosized Fe3O4 catalyst was synthesized via a modified reverse coprecipitation method and characterized by means of a scanning electron microscope (SEM) and an X-ray diffraction (XRD) analysis instrument. The degradation efficiency and reaction rate of Fe3O4 in activating sodium persulfate used to degrade ciprofloxacin were determined from the catalyst dosage, oxidant concentration, and initial pH. The results showed that under the optimum conditions of a catalyst dosage of 2.0 g·L?1, a sodium persulfate concentration of 1.0 g·L?1, and an initial pH of 7, the degradation rate of ciprofloxacin was 93.73%, the removal rate of total organic carbon was 78%, and the first-order reaction constant was 0.06907 min?1 within 40 min. It was also demonstrated that the reactive oxygen species in the Fe3O4/sodium persulfate catalytic system were mainly composed of SO4 and supplemented by OH· and HO2· using probe compounds such as ethanol, tertiary butanol, and benzoquinone.  相似文献   

2.
This article considers Advanced Oxidation Processes involving O3, O3/UV, O3/H2O2/UV, and H2O2/UV to destroy cyanide in jewelry manufacturing wastewaters. All experiments were performed in a semibatch reactor. The results showed that total cyanide can be reduced with different reaction rates, and the decrease of total cyanide can be described by pseudo–first-order kinetics. The reaction was performed under different pH values and H2O2 dosages to find the optimal conditions for the oxidation processes. The ozonation process destroyed total cyanide faster at a pH = 12, whereas ozonation combined with H2O2 and/or UV destroyed cyanide faster at a pH =10. The total cyanide destruction rate in the UV/H2O2 (700 mg/L) treatment was the highest among all studied processes, with removal efficiencies of 99% for CN?, 99% for COD and 99% for TOC.  相似文献   

3.
UV/H2O2氧化联合Ca(OH)2吸收同时脱硫脱硝   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杨先  张军  王助良 《化工学报》2012,63(10):3277-3283
在小型紫外光-鼓泡床反应器中,对UV/H2O2氧化联合Ca(OH)2吸收同时脱除燃煤烟气中NO与SO2的主要影响因素[H2O2浓度、紫外光辐射强度、Ca(OH)2浓度、NO浓度、溶液温度、烟气流量以及SO2浓度]进行了考察。采用烟气分析仪和离子色谱仪分别对尾气中的NO2和液相阴离子作了检测分析。结果显示:在本文所有实验条件下,SO2均能实现完全脱除。随着H2O2浓度、紫外光辐射强度和Ca(OH)2浓度的增加,NO的脱除效率均呈现先大幅度增加后轻微变化的趋势。NO脱除效率随烟气流量和NO浓度的增加均有大幅度下降。随着溶液温度和SO2浓度的增加,NO脱除效率仅有微小的下降。离子色谱分析表明,反应产物主要是SO42-和NO3-,同时有少量的NO2-产生。尾气中未能检测到有害气体NO2。  相似文献   

4.
Photo‐oxidation of cyanide was studied in aqueous solution using a low‐pressure ultra‐violet (UV) lamp along with H2O2 as an oxidant. It was observed that by UV alone, cyanide degradation was slow but when H2O2 was used with UV, the degradation rate became faster and complete degradation occurred in 40 min. The rate of degradation increased as the lamp wattage was increased. It was also observed that cyanide oxidation is dependent on initial H2O2 concentration and the optimum dose of H2O2 was found to be 35.3 mmol dm?3. Photo‐oxidation reactions were carried out at alkaline pH values (10–11) as at acidic pH values, cyanide ions form highly toxic HCN gas which is volatile and difficult to oxidise. By the UV/H2O2 process, using a 25 W low‐pressure UV lamp and at alkaline pH of 10.5 with an H2O2 dose of 35.3 mmol dm?3, cyanide (100 mg dm?3) was completely degraded in 40 min when air was bubbled through the reactor, but when pure oxygen was bubbled the time reduced to 25 min. The cyanide degradation reaction pathway has been established. It was found that cyanide was first oxidised to cyanate and later the cyanate was oxidised to carbon dioxide and nitrogen. The kinetics of cyanide oxidation were found to be pseudo‐first order and the rate constant estimated to be 9.9 × 10?2min?1 at 40 °C. The power required for complete degradation of 1 kg of cyanide was found to be 167 kWh (kilowatt hour). Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The oxidation of 1,3,5‐trichlorobenzene (TCB) by ozone, ozone/UV, ozone/H2O2 and ozone/UV/H2O2 was studied. All studies were conducted in a continuously‐flowing completely mixed reactor (CFCMR), operated at steady‐state conditions using a hydraulic retention time of 10 minutes. The greatest removal of TCB using ozone/H2O2 treatment was achieved using a H2O2 concentration of 60 μM. At low pH values (approx. 2) ozone/UV performed significantly better than either ozone alone or ozone/H2O2. However, at circumneutral pH, the removal efficiencies of TCB by ozone/UV and ozone/H2O2 and ozone/UV/H2O2 were essentially equal (~ 97% for TCB). The removal efficiency of ozone alone was ~93% for TCB. At high pH (> 9) there was no advantage in supplementing ozone with either UV or H2O2 as the removal efficiencies for all processes studied were essentially equal.

The effect of humic acid and bicarbonate on the removal of TCB was studied. At 1.6 mg/L humic acid, 92–95% of the TCB was oxidized by the processes studied. The removal of TCB by ozone alone was significantly affected by the presence of bicarbonate ion. For the other processes at 10 mM bicarbonate, approximately 80% of the TCB was oxidized.  相似文献   


6.
The ozonation of esculetin (6,7-dihydroxycoumarin), a major pollutant present in the wastewater generated in the cork industry, was accelerated at high pH, with apparent second-order rate constants in the range from 3.3 × 104 L/(mol·s) at pH=2 to 8.4 × 107 L/(mol·s) at pH=9. The acid-base equilibrium of esculetin was studied, resulting in a pKa value of 7.37. Taking into account this pKa, the rate constants for the reaction between ozone and the un dissociated and dissociated forms of esculetin were 3.0 × 104 and L/(mol·s) 6.67 × 108 L/(mol·s), respectively. Apparent first-order rate constants for the photolysis by UV irradiation were also evaluated, with values between 0.12 × 10?2 min?1 at pH=2 and 1.15 × 10?2 min?1 at pH=9, while the quantum yields for this photo-degradation reaction varied from 0.99 × 10?2 mol/Eins to 11.1 × 10?2 mol/Eins at these pHs. The Fenton's reagent system was used for the generation of hydroxyl radicals, and the rate constant for the reaction between esculetin and these radicals was determined to be 1.06 × 1010 L/(mol·s). Finally, several chemical oxidation systems were used in the degradation of this pollutant: single oxidants (ozone, UV irradiation) and advanced oxidation processes (Fenton's reagent, UV/H2O2, O3/H2O2, O3/UV, O3/H2O2 /UV, and photo-Fenton system). The results revealed that the most efficient methods in terms of esculetin removal were ozonation among the single oxidants, and the photo-Fenton system among the combined processes.  相似文献   

7.
PWN's water treatment plant Andijk was commissioned almost 40 years ago. It services water from the IJssel Lake by conventional surface water treatment. In view of taste and odor problems the plant was retrofitted with GAC filtration 25 years ago. The finished water quality still complies with all E.C. and Dutch drinking water standards. Nevertheless an upgrade is desired to avoid the use of chlorine and to extend the barriers against pathogenic micro-organisms and a broad range of organic micropollutants such as pesticides, rocket fuel by-products (NDMA), fuel oxygenates (MTBE), solvents (dioxane), endocrine disruptors, algae toxins, pharmaceuticals, etc. UV/H2O2 treatment was selected for both primary disinfection and organic contaminant control. The disinfection requirements were based on a 10?4 health risk. The required 3 log inactivation for Giardia and Cryptosporidium was achieved by an UV dose lower than 20 mJ/cm2. The highest UV dose, 105 mJ/cm2, was needed for the inactivation of spores of Sulphite Reducing Clostridia. Reactivation of protozoa was established for UV doses up to 25 mJ/cm2, for doses higher than 45 mJ/cm2 no reactivation was observed. In view of the raw water concentrations the required organic contaminant degradation was set at 80%. Collimated beam and pilot-plant work showed that the required degradation can be achieved by the proper combination of electric energy and H2O2. In a UV reactor optimized for organic contaminant control, UV dose of 540 mJ/cm2 (about 0.5 kWh/m3) and 6 mg/L H2O2 were needed. Under those conditions pesticides (atrazine), NDMA, MTBE, dioxane, endocrine disruptors (bisphenol A), microcystine and pharmaceuticals (diclofenac, ibuprofen) could be removed up to the required 80%. Bromate formation was absent while formation of primary metabolites was insignificant. The UV dose for organic contaminant control is about five times higher than the dose needed for disinfection. The UV/H2O2 process was implemented into the existing treatment train between the sand and GAC filters. In the GAC filters excess H2O2 is degraded, nitrite is converted into nitrate and biodegradable reaction products are consumed by bacteria. The full-scale installation with 3 streets of 4 Trojan Swift 16L30 reactors has been in operation since October 2004. Disinfection and organic contaminant control are as expected.  相似文献   

8.
The effect of UV radiation on the removal of formic, oxalic and maleic acids from water by metallic ion (Fe2+ or Cu2+)/H2O2 and metallic ion/O3 was studied and compared. The results showed that metallic ion/O3/UV has higher efficiency than metallic ion/H2O2/UV for oxalic acid removal. UV radiation significantly increases the efficiency of metallic ion/H2O2 for formic and maleic acids removal while its effect on the efficiency of metallic ion/O3 for formic acid removal is minor. However, at pH 2, O3 alone showed higher efficiency than metallic ion/H2O2/UV for formic acid removal. Contrary to the relative efficiency of metallic ions in the previous systems, Cu2+ exhibited higher rate than Fe2+ for the removal of the degradation products of maleic acid by O3. UV radiation exhibited a minor effect on the efficiency of Cu2+/O3, while it exhibited a large effect on the efficiency of Fe2+/O3 for the removal of the degradation products of maleic acid.  相似文献   

9.
10.
UV/H2O2 advanced oxidation is an effective barrier against organic micro pollutants. Several studies have focused on the degradation of a wide range of pollutants, but regarding the comparison of low-pressure mercury lamps (LP) with medium-pressure mercury lamps (MP) with respect to energy consumption by the UV/H2O2 process, little is known so far. Although the absorbance of H2O2 at 254 nm is low, the results of this research show that the yield of hydroxyl radical formation (OHCT) with LP lamps is comparable or higher than with MP lamps. In a water matrix with a background absorbance due to organics and nitrate, H2O2 absorbs UV light very effectively at 254 nm. Generally, due to the contribution of direct photolysis, the degradation of pollutants is better with MP-UV/H2O2 than with LP-UV/H2O2 at the same UV fluence. Therefore, with LP-UV/H2O2 micro pollutants are predominantly degraded through reaction with OH radicals. However, due to the much higher efficiency of LP lamps in converting electrical energy to UV-C light, the energy required to achieve 90% degradation (EEO) of pesticides and pharmaceuticals can be significantly lower with LP-UV/H2O2 than with MP-UV/H2O2. Results of bench-scale tests show EEO data of the LP-UV/H2O2 process to be 30%–50% lower than for the MP-UV/H2O2 process. At these process conditions MS2 phage inactivation was found to be more than 8 logs for both MP-UV/H2O2 and LP-UV/H2O2.  相似文献   

11.
UV/H2O2氧化联合CaO吸收脱除NO的传质-反应动力学   总被引:3,自引:0,他引:3  
刘杨先  潘剑锋  刘勇 《化工学报》2013,64(3):1062-1068
在实验室规模的光化学反应器中,基于实验研究﹑动力学理论以及双膜理论,研究了UV/H2O2氧化联合CaO吸收(UV/H2O2-CaO工艺)脱除燃煤烟气中NO的传质-反应动力学。分析了NO吸收的传质-反应过程,明确了NO吸收过程的主要控制步骤和强化措施,测定了关键的动力学参数,推导了NO吸收过程的理论模型。结果表明:在实验范围内,NO吸收速率随着NO浓度的增加几乎呈线性增加。随着H2O2浓度和CaO浓度的增加,NO的吸收速率均呈现先增加后变缓的趋势。UV/H2O2-CaO工艺脱除NO是一个拟一级快速反应过程,强化气相主体扰动﹑增加气液接触面积和提高NO分压可有效提高NO的吸收速率。NO吸收速率方程的计算值和实验值具有较好的一致性。  相似文献   

12.
The objective of the study was to investigate the removal of synthetic organic compounds and THM precursors by two photocatalytic oxidation processes in the presence of synthetic polymers. H202/UV and O3/UV processes were tested on solutions of nitrobenzene and aquatic fulvic substances in the absence and presence of Polyethylene Oxide (PEO) and a Betz Polymer. The presence of high concentrations of PEO reduced the removal rate of nitrobenzene by competing with it for hydroxyl radicals. The presence of low concentrations of PEO did not significantly alter the removal rate of nitrobenzene and THM precursors. Experimental results indicated that even in the presence of the polymers, decomposition rather than coupling was the favored reaction pathway.  相似文献   

13.
Fe2-xYxW3O12 powder has been synthesized by the citrate sol-gel process. A model was proposed to calculate the concentration of species in a citric solution. The calculated results could provide valuable information for determining the optimal molar ratio of cation to citric acid and pH value of solution for Fe2-xYxW3O12 preparation. The predicted parameters derived from this model are in good agreement with the experimental results. The prepared gel and the Fe2-xYxW3O12 powder were characterized by X-ray diffraction (XRD) and differential thermal analysis-thermogravimetry (DTA-TG). The results show that it is very difficult to obtain pure Fe2W3O12 powder by the citrate sol-gel process in the temperature range 500°–1000°C, however, Y2W3O12 can easily be prepared even at 500°C. Y2W3O12 annealed at 1000°C for 10 h is favorable for absorbing moisture in air to form Y2W3O12·3.3H2O. The thermal expansion coefficients of Y2W3O12·3.3H2O are: αa = ? 8.01 × 10?6°C?1, αb = ? 2.51 × 10?7°C?1, and αc = ? 5.55 × 10?6°C?1 in 473–1173 K.  相似文献   

14.
The complete photocatalytic oxidation of C2H4 with O2 into CO2 and H2O has been achieved on ultrafine powdered TiO2 photocatalysts and the addition of H2O was found to enhance the reaction. The photocatalytic reaction has been studied by IR, ESR, and analysis of the reaction products. UV irradiation of the photocatalysts at 275 K led to the photocatalytic oxidation of C2H4 with O2 into CO2, CO, and H2O. The large surface area of the photocatalyst is one of the most important factors in achieving a high efficiency in the photocatalytic oxidation of C2H4. The photoformed OH species as well as O 2 and O 3 anion radicals play a significant role as a key active species in the complete photocatalytic oxidation of C2H4 with O2 into CO2 and H2O. Interestingly, small amount of Pt addition to the TiO2 photocatalyst increased the amount of selective formation of CO2 which was the oxidation product of C2H4 and O2.  相似文献   

15.
This study evaluated the feasibility of treating color filter effluent by H2O2/UV pre-oxidation and membrane postseparation for in-house reuse. The effluent qualities were TOC of 5.8–34 mg/L, color of 46–138 ADMI, and conductivity of 1020–3500 μS/cm. Although the RO separation could directly remove TOC, color, and conductivity effectively, the serious fouling problem still existed. Through H2O2/UV pre-oxidation (UV = 13 W, H2O2 = 200 mg/L), organic and biofouling were inhibited to increase the normalized flux decline from 5% to 77%. That is, H2O2/UV pre-oxidation could mitigate the permeate flux decline as well as to improve the water quality for water reuse.  相似文献   

16.
The advanced chemical oxidation of raw and biologically pretreated textile wastewater by (1) ozonation, (2) H2O2 /UV − C oxidation and (3) sequential application of ozonation followed by H2O2 /UV − C oxidation was investigated at the natural pH values (8 and 11) of the textile effluents for 1 h. Analysis of the reduction in the pollution load was followed by total environmental parameters such as TOC, COD, UV–VIS absorption kinetics and the biodegradability factor, fB. The successive treatment combination, where a preliminary ozonation step was carried out prior to H2O2 /UV − C oxidation without changing the total treatment time, enhanced the COD and TOC removal efficiency of the H2O2 /UV − C oxidation by a factor of 13 and 4, respectively, for the raw wastewater. In the case of biotreated textile effluent, a preliminary ozonation step increased COD removal of the H2O2 /UV − C treatment system from 15% to 62%, and TOC removal from 0% to 34%. However, the sequential process did not appear to be more effective than applying a single ozonation step in terms of TOC abatement rates. Enhancement of the biodegradability factor (fB) was more pronounced for the biologically pretreated wastewater with an almost two‐fold increase for the optimized Advanced Oxidation Technologies (AOTs). For H2O2 /UV − C oxidation of raw textile wastewater, apparent zero order COD removal rate constants (kapp), and the second order OH· formation rates (ri) have been calculated. © 2001 Society of Chemical Industry  相似文献   

17.
The efficiency and cost‐effectiveness of H2O2/UV for the complete decolorization and mineralization of wastewater containing high concentrations of the textile dye Reactive Black 5 was examined. Oxidation until decolorization removed 200–300 mg g?1 of the dissolved organic carbon (DOC). The specific energy consumption was dependent on the initial dye concentration: the higher concentration required a lower specific energy input on a weight basis (160 W h g?1 RB5 for 2.1 g L?1 versus 354 W h g?1 RB5 for 0.5 g L?1). Biodegradable compounds were formed, so that DOC removal could be increased by 30% in a following biological stage. However, in order to attain 800 mg g?1 overall mineralization, 500 mg g?1 of the DOC had to be oxidized in the H2O2/UV stage. A cost analysis showed that although the capital costs are much less for a H2O2/UV stage compared to ozonation, the operating costs are almost double those of ozonation. Thus, while H2O2/UV can compete with ozonation when the treatment goal only requires decolorization, ozonation is more cost‐effective in this case when mineralization is desired. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
The article focuses on an assessment of adsorbable organic halides degradation during the process of conventional ozonation and advanced oxidation as far as the water containing bromides is concerned. The amount of AOX in the water examined varied from 59 to 105 μg Cl?/L, and the bromides concentration exceeded 200 μg Br?/L. The effects obtained by O3 and O3/UV methods were compared with the results achieved for the water which underwent only UV irradiation. The analysis of presented research results shows that out of the examined oxidation methods, in water of pH 6.8–9.5 and temperature of approximately 287 K, the highest degree of AOX decomposition, was achieved by UV irradiation of water, which was previously subjected to ozonation. However, when the ozone dose reached ≥ 0.3 mg O3/mg C in an alkaline environment, bromates were formed in amounts exceeding the maximum contaminant level in both processes.  相似文献   

19.
This work reports the experimental results of kinetics study of n-butylparaben (BP) degradation in H2O2/UV systems. A pseudo–steady-state and competition kinetic approaches were used to determine the reaction rate constants between the BP and ?OH. In competition kinetics atrazine (2.30?×?109 M?1?s?1) was used as a reference compound. The measured rate constants for ?OH reaction with BP ranged from (3.84 ± 0.12)?×?109 M?1?s?1 to (8.56 ± 0.90)?×?109 M?1?s?1 depending on solution pH and temperature. Values of the rate constant obtained using different methods were in good agreement. The calculated activation energy was equal to 19.01 ± 1.02 kJ mol?1.  相似文献   

20.
BACKGROUND: Industrial surfactants are biologically complex organics that are difficult to degrade and may cause ecotoxicological risks in the environment. Until now, many scientific reports have been devoted to the effective treatment of surfactants employing advanced oxidation processes, but there is no available experimental study dealing with the optimization and statistical design of surfactant oxidation with the well‐established H2O2/UV‐C process. RESULTS: Considering the major factors influencing H2O2/UV‐C performance as well as their interactions, the reaction conditions required for the complete oxidation of a commercial non‐ionic textile surfactant, an alkyl ethoxylate, were modeled and optimized using central composite design‐response surface methodology (CCD‐RSM). Experimental results revealed that for an aqueous non‐ionic surfactant solution at an initial chemical oxygen demand (COD) of 450 mg L?1, the most appropriate H2O2/UV‐C treatment conditions to achieve full mineralization at an initial pH of 10.5 were 47 mmol L?1 H2O2 and a reaction time of 86 min (corresponding to a UV dose of 30 kWh m?3). CONCLUSION: CCD allowed the development of empirical polynomial equations (quadratic models) that successfully predicted COD and TOC removal efficiencies under all experimental conditions employed in the present work. The process variable treatment time, followed by the initial COD content of the aqueous surfactant solution were found to be the main parameters affecting treatment performance, whereas the initial H2O2 concentration had the least influence on advanced oxidation efficiencies. The H2O2 concentration and surfactant COD were found to be more important for TOC abatement compared with COD abatement. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号