首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of nano-scale surface texture on wear resistance of diamond-like carbon (DLC) films was studied using a reciprocating ball-on-flat tribometer in dry, humid, and liquid water environments. The nano-scale surface texture was produced by depositing ∼1 μm thick DLC films onto silicon substrates pre-textured with pyramidal wells and polystyrene spheres. The surface roughness of the textured DLC films was about 50 nm in both cases. The friction and wear behavior of the flat and nano-textured DLC films were tested with AISI 440C-grade stainless steel balls at a contact load creating about 360 nm deep Hertzian deformation which is significantly larger than the surface roughness. At this condition, nano-texturing did not affect the friction coefficient, but it significantly reduced the wear of DLC films in dry and humid nitrogen compared to flat DLC. In dry nitrogen, the nano-textured DLC films showed the ultra-low friction without substantial wear of DLC and deposition of thick transfer films onto the counter-surface. The wear reduction appeared to be related to the stress relief in the nano-textured DLC film. In liquid water, surface features on the nano-textured DLC films were diminished due to tribochemical oxidation and material removal at the sliding interface.  相似文献   

2.
This paper will present physical and tribological properties of diamond-like carbon (DLC) films deposited by plasma-enhanced chemical vapor deposition using a commercial RF high density plasma (HDP). The films have been prepared from acetylene or acetylene+hydrogen mixtures using a range of HDP conditions. The composition and optical properties of the DLC films have been characterized by forward recoil elastic scattering (FRES) and Fourier transform infrared spectroscopy (FTIR). The tribological properties have been measured in ambient air and in dry nitrogen using a pin-on-flat tribometer. While the friction coefficients in air (<0.14) were mostly independent of the deposition conditions, the friction in dry nitrogen was affected by the deposition conditions, reaching values as low as 0.01. The wear rates of the HDP DLC films were extremely low. This paper will discuss the friction properties of these films in relation to the deposition conditions and their physical properties.  相似文献   

3.
We have deposited unhydrogenated and hydrogenated Si-incorporated DLC (Si-DLC) films by pulsed laser deposition using KrF excimer laser, and systematically examined the structure and the mechanical and tribological properties of the films. Hydrogenated Si-DLC films were prepared by atomic-hydrogen irradiation during deposition. The Si/(Si+C) ratio in DLC films increased by atomic-hydrogen irradiation during deposition, indicating that the hydrogen etching is more effective for C atoms compared with Si atoms. The formation of Si–C bonds in the films and silicon oxides only at the surfaces was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was found that the atomic-hydrogen irradiation led to the formation of Si–H bonds to prevent the surface oxidation of the Si-DLC films. The scratch tests revealed that the critical loads of the films deposited with hydrogen were higher than those of the films deposited without hydrogen. We found that the moderately hydrogen-irradiated Si-DLC films tended to have higher wear resistance than the unhydrogenated Si-DLC films.  相似文献   

4.
Diamond films were deposited on silicon substrate by microwave plasma enhanced chemical vapor deposition (MPCVD) using H2 and CH4 gas mixture. The morphological evolution process was characterized systematically by means of field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Special attention has been paid to the influence of the methane concentrations on the microstructures of diamond films, which shows a gradual transition from nanocrystalline to microcrystalline films, and finally displays a hybrid diamond-graphite nanostructure with the length of a few micrometers. Finally, the friction behaviour of the hybrid films was studied. The value of the friction coefficient of the hybrid films is 0.10 and the corresponding wear resistance is below 1.9 × 10 7 mm3/N·m in diamond composites/Al2O3 sliding system in ambient atmosphere under dry sliding conditions. It is a convenient path to synthesize hybrid diamond/graphite nanostructures by MPCVD depending on higher methane concentrations in the absence of nitrogen or argon. The structure is appropriate for the potential applications as high efficient mechanical tools.  相似文献   

5.
Diamond-like carbon (DLC) films were deposited on silicon wafers by thermal electron excited chemical vapor deposition (CVD). To change the hydrogen content in film, we used three types of carbon source gas (C7H8, CH4, and a CH4+H2) and two substrate bias voltages. The hydrogen content in DLC films was analyzed using elastic recoil detection analysis (ERDA). Tribological tests were conducted using a ball-on-plate reciprocating friction tester. The friction surface morphology of DLC films and mating balls was observed using optical microscopy and laser Raman spectroscopy.Hydrogen content in DLC films ranged from 25 to 45 at.%. In a water environment, the friction coefficient and specific wear rate of DLC films were 0.07 and in the range of 10−8–10−9 mm3/Nm, respectively. The friction coefficient and specific wear rate of DLC film in water were hardly affected by hydrogen content. The specific wear rate of DLC film with higher hardness was lower than that of film with low hardness. Mating ball wear was negligible and the friction surface features on the mating ball differed clearly between water and air environments, i.e., the friction surface on mating balls in water was covered with more transferred material than that in air.  相似文献   

6.
A superhard hydrogen-free amorphous diamond-like carbon (DLC) film was deposited by pulsed arc discharge using a carbon source accelerator in a vacuum of 2×10−4 Pa. The growth rate was about 15 nm/min and the optimum ion-plasma energy was about 70 eV. The impact of doping elements (Cu, Zr, Ti, Al, F(Cl), N) on the characteristics of DLC films deposited on metal and silicon substrates was studied aiming at the choice of the optimum coating for low friction couples. The microhardness of thick (≥20 μm) DLC films was studied by Knoop and Vickers indentations, medium thick DLC films (1–3 μm) were investigated using a ‘Fischerscope’, and Young's module of thin films (20–70 nm) was studied by laser induced surface acoustic waves. The bonds in DLC films were investigated by electron energy loss spectroscopy (EELS), X-ray excited Auger electron spectroscopy (XAES), and X-ray photoelectron spectroscopy (XPS). The adhesion of DLC films was defined by the scratch test and Rockwell indentation. The coefficient of friction of the Patinor DLC film was measured by a rubbing cylinders test and by a pin-on-disk test in laboratory air at about 20% humidity and room temperature. The microhardness of the Patinor DLC film was up to 100 GPa and the density of the film was 3.43–3.65 g/cm3. The specific wear rate of the Patinor DLC film is comparable to that of other carbon films.  相似文献   

7.
The effect of nitrogen addition in the gas phase on hydrogen impurity incorporation into CVD diamond films was investigated. A series of thick diamond films of different morphology and quality ranging from large-grained polycrystalline to fine-grained nanocrystalline were deposited on silicon wafers using a 5 kW microwave plasma assisted CVD system. They were obtained only by changing the small amount of oxygen and nitrogen addition while keeping all other input parameters the same. Bonded hydrogen impurity in these diamond films was studied by using Fourier-transform infrared spectroscopy. It was found that with increasing the amount of nitrogen addition in the gas phase, the produced diamond films from large-grained polycrystalline gradually shift to fine-grained nanocrystalline and their crystalline quality is drastically degraded, while the amount of incorporated hydrogen impurity in the diamond films increases sharply. The role of nitrogen additive on diamond growth and hydrogen incorporation is discussed. These results shed light into the growth mechanism of CVD diamond films ranging from polycrystalline to nanocrystalline, and the incorporation mechanism of hydrogen impurity in CVD diamonds.  相似文献   

8.
Diamond-like carbon (DLC) films were deposited on Si (100) wafers by a plasma enhanced chemical vapor deposition (PECVD) technique using CH4 plus Ar as the feedstock. The friction and wear behaviors of the resulting film sliding against Si3N4 balls were investigated on a ball-on-disk test rig in air and nitrogen environments at a relative humidity from 5% to 100%. The worn surface morphologies of the DLC film and the Si3N4 counterpart were observed on a scanning electron microscope (SEM), while the chemical states of some typical elements thereon were investigated by means of X-ray photoelectron spectroscopy (XPS). It was found that the DLC film recorded continuously increased friction coefficient and wear rate with increasing relative humidity in air. It showed linearly increased friction coefficient with increasing relative humidity in nitrogen, in this case the wear rate sharply decreased and reached the minimum at a relative humidity of 40%, which was followed by an increase with further increase of the relative humidity. The interruption of the transferred carbon-rich layers on the Si3N4 balls, and the friction-induced oxidation of the films in higher relative humidity were proposed to be the main reasons for the increases of the friction coefficient and wear rate. Moreover, the oxidation and hydrolysis of the Si3N4 ball in higher relative humidity, leading to the formation of a tribochemical film that mainly consists of silica gel on the wearing surface, were also thought to have effects on the friction and wear behaviors of the DLC films.  相似文献   

9.
Boron nitride (BN) films with different cubic and hexagonal phase compositions were deposited on silicon substrates via diamond interlayers by magnetron sputtering and electron cyclotron resonance microwave plasma chemical vapor deposition. The tribological behaviors of the BN films were investigated systematically using a ball-on-disc tribometer with silicon nitride as the counterpart. Comparison studies were also performed on sintered cubic and hexagonal BN compacts. The influence of phase compositions and surface roughness of BN coatings on their tribological characteristics was studied. The cubic BN (cBN) films showed excellent wear resistance against silicon nitride. The wear rate of the cBN films was estimated to be about 1.0 × 10?7 mm3/N m by measuring the cross-sectional area of the wear track after the sliding test over a distance of 12 km.  相似文献   

10.
A covalently immobilized polymer film was constructed on silicon substrate by a two-step method. As an anchor interlayer, (3-glycidoxypropyl)trimethoxysilane (GPMS) was self-assembled on hydroxylated silicon substrate to create epoxy-terminated surface, then poly(styrene-b-acrylic acid) (PSAA) was chemically grafted to the epoxy-derivatized substrates. The formation and surface properties of the films were characterized by means of ellipsometry, water contact angle measurement, attenuated total reflectance Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and atomic force microscope (AFM). The nano- and micro-tribological properties of the films were evaluated by AFM and ball-on-plate tribometer, respectively. The results show that GPMS–PSAA film exhibits excellent durability and wear resistance, which is attributed to the molecular components of PSAA and the firm bonding between polymer molecules and silicon substrate via epoxysilane molecular glue. The influence of interlayer between polymer and substrate surface on tribological properties of ultrathin polymer film was revealed, which has an important significance upon designing ultrathin lubrication films with excellent tribological properties for micro/nanoelectromechanical systems.  相似文献   

11.
Boron nitride films were prepared by pulsed laser ablation from a boron nitride target using a KrF-excimer laser, where the growing films were deposited in nitrogen atmosphere or bombarded by a nitrogen/argon ion beam. Films deposited without or at weak ion bombardment (such films will be called l-BN in this paper) are hexagonal with amorphous to turbostratic microstructure (l-BN) and show high adhesive strength to silicon and stainless steel substrates. By using them as intermediate layers, the adhesion of pure cubic boron nitride films (c-BN) can significantly be improved. l-BN films and l-BN/h-BN/c-BN layer systems have been investigated by in-situ ellipsometry, infrared spectroscopy and cross-section and plan-view high-resolution transmission electron microscopy, including diffraction. The mechanical properties, i.e. stress and hardness, of these films and layer systems are presented. l-BN films deposited at higher laser energy densities have compressive stresses as high as 11.5 GPa. Films deposited at lower laser energy densities have stresses in the range of 4.7 to 1.3 GPa and a Vickers hardness in the range of 18.6 to 7.5 GPa depending on substrate temperature and ion bombardment. The compressive stresses of 400 nm thick adherent c-BN films were estimated to be 4.5 GPa.  相似文献   

12.
Nitrogen incorporated diamond like carbon films have been deposited by microwave surface wave plasma chemical vapor deposition (MW-SWP-CVD), using methane (CH4) as the source of carbon and with different nitrogen flow rates (N2 / CH4 flow ratios between 0 and 3). The influence of the nitrogen incorporation on the optical, structural properties and surface morphology of the carbon films were investigated using different spectroscopic techniques. The nitrogen has been incorporated into DLC:N films which was confirmed by the X-ray photoelectron spectroscopy (XPS) measurement. Moreover, the nitrogen incorporation was accompanied by a variation in the optical gap, which was attributed to the removal or creation of band tail states.  相似文献   

13.
Oxidation resistant, thin, pinhole‐free, crystalline mullite coatings were deposited on zirconia and silicon carbide particles using atomic layer deposition (ALD). The composition of the films was confirmed with inductively coupled plasma optical emission spectroscopy (ICP OES), and the conformality and elemental dispersion of the films were characterized with transmission electron microscopy (TEM) and energy dispersive X‐ray spectroscopy (EDS), respectively. The films are deposited on the particle surface with a deposition rate of ~1 Å/cycle. The elemental concentration of aluminum relative to silicon in the film was determined to be 2.68:1 which agrees closely with the ratio of stable 3:2 mullite (2.88:1). A high‐temperature anneal for 5 hours at 1500°C was used to crystallize the films into the mullite phase. This work represents the first deposition of mullite films by ALD. The mullite and alumina‐coated particles were exposed to high‐temperature steam for 20 hours at 1000°C to assess the oxidation resistance of the films, which reduced the oxidation of silicon carbide by up to 62% relative to uncoated particles under these conditions. The activation energy of oxygen diffusion in the films was determined with density functional theory, and the computational results aligned well with the experimental outcomes.  相似文献   

14.
The change of the structure of carbon films after nitrogen incorporation is a topic of extensive discussion. Concerning this topic, tetrahedral amorphous carbon (ta-C) prepared by filtered cathodic arc deposition was chosen for the present investigations with up to 29 at.% nitrogen incorporated into the films. Studies on the film microstructure in a high-resolution transmission electron microscope (TEM) showed nanocrystalline structures of nitrogenated carbon from the films with a high nitrogen concentration. The variation of the microstructure of the films was thoroughly emphasized from carbon and nitrogen K-edges using electron energy loss spectroscopy (EELS) as well as near-edge X-ray absorption fine structure (NEXAFS), spectroscopy. In addition, NEXAFS spectra were used to find out the most probable molecular structure of the CN system and have been shown to be consistent with results obtained from EELS.  相似文献   

15.
含氟硅丙烯酸酯核壳乳液及涂膜表面性能   总被引:3,自引:0,他引:3       下载免费PDF全文
徐蕊  肖新颜 《化工学报》2009,60(12):3142-3147
在可聚合阴离子乳化剂体系下,以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为主要单体,甲基丙烯酸十二氟庚酯(DFMA)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)为功能单体,采用半连续种子乳液聚合法合成了含氟硅丙烯酸酯核壳乳液。考察了DFMA和KH-570用量对乳液聚合过程和乳胶膜表面疏水性能的影响,并对乳胶膜的表面自由能进行了估算。采用傅里叶红外光谱(FT-IR)、差示扫描量热仪(DSC)、热重(TG)、接触角(CA)及X射线光电子能谱(XPS)对氟硅丙乳液及乳胶膜进行了表征。研究结果表明,氟硅单体有效地参与了聚合,乳胶膜中氟硅元素呈梯度分布,当氟硅丙乳液中DFMA和KH-570用量分别为16%和5%(质量分数)时,涂膜-空气界面与去离子水的接触角为110.6°,涂膜的表面能低至15.4 mN·m-1,其疏水性和耐热性有较大幅度提高。  相似文献   

16.
Poly(tetrafluoroethylene) (PTFE) powder was irradiated with 60Co γ-rays to improve its dispersing ability in polyurethane (PU) as a binder. The bonded solid lubricant films of the irradiated PTFE were prepared on an AISI 1045 steel block by spraying and curing at ambient temperature, with PU as the binder. The tribological properties of bonded solid lubricant films with the PTFE pigment volume fraction were examined on a ring-on-block friction and wear tester. The interfacial adhesion between the PU binder and PTFE powder was investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), immersion heat, and X-ray photoelectron spectroscopy (XPS). It was found that γ-ray irradiation increases the activity of the PTFE powder surface and improves the interfacial adhesion between the PTFE powder and the PU binder, which is helpful for improving the wear resistance of the corresponding bonded solid lubricant films.  相似文献   

17.
Boron and silicon doped diamond films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate by using a bias-enhanced hot filament chemical vapor deposition (HFCVD) apparatus. Acetone, hydrogen gas, trimethyl borate (C3H9BO3) and tetraethoxysilane (C8H20O4Si) are used as source materials. The tribological properties of boron-doped (B-doped), silicon-doped (Si-doped) diamond films are examined by using a ball-on-plate type rotating tribometer with silicon nitride ceramic as the counterpart in ambient air. To evaluate the cutting performance, comparative cutting tests are conducted using as-received WC-Co, undoped and doped diamond coated inserts, with high silicon aluminum alloy materials as the workpiece. Friction tests suggest that the Si-doped diamond films present the lowest friction coefficient and wear rate among all tested diamond films because of its diamond grain refinement effect. The B-doped diamond films exhibit a larger grain size and a rougher surface but a lower friction coefficient than that of undoped ones. The average friction coefficient of Si-doped, B-doped and undoped diamond films in stable regime is 0.143, 0.193 and 0.233, respectively. The cutting results demonstrate that boron doping can improve the wear resistance of diamond films and the adhesive strength of diamond films to the substrates. Si-doped diamond coated inserts show relatively poor cutting performance than undoped ones due to its thinner film thickness. B-doped and Si-doped diamond films may have tremendous potential for mechanical application.  相似文献   

18.
气相沉积BN膜的性能及形成机制的研究   总被引:3,自引:0,他引:3  
用射频等离子体辅助化学气相沉积技术制备了BN膜,对以Ar+10%H2(体系分数),H2和N2气为载气沉积的膜,进行了FTIR,TEM,SEM等分析,比较了不同载气下膜层的立方氮化硼含量,膜基结合力,膜层残余应力,硬度和耐磨性,对立方氮化硼的形成机制进行了探讨。  相似文献   

19.
Optical properties of amorphous thin films of silicon carbon boron nitride (Si–C–B–N) obtained by reactive sputtering has been studied. Compositional variations were obtained by changing the nitrogen and argon gas mixture ratio in the sputtering ambient. The effect of gas ratios and annealing on the optical properties was investigated. It was found that the transmittance of the films increases with nitrogen incorporation. Annealing at higher temperatures leads to considerable increase in transmittance. Optical energy gap (Tauc gap) calculated from absorption data is influenced by annealing temperatures and reactive process gas mixture. Changes in optical properties were correlated to the chemical modifications in the films due to annealing, through X-ray photoelectron spectroscopy. Studies reveal that the carbon and nitrogen concentrations in the films are highly sensitive to temperature. Annealing at higher temperatures leads to broken C–N bonds which results in the loss of C and N in the films. This is believed to be the primary cause for variations in optical properties of the films.  相似文献   

20.
Diamond-like carbon (DLC) films doped with different silicon contents up to 11.48 at.% were fabricated by plasma immersion ion implantation and deposition (PIII-D) using a silicon cathodic arc plasma source. The surface chemical compositions and bonding configurations were determined by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results reveal that the sp3 configuration including Si–C bonds increases with higher silicon content, and oxygen incorporates more readily into the silicon and carbon interlinks on the surface of the more heavily silicon-doped DLC films. Contact angle measurements and calculations show that the Si-DLC films with higher silicon contents tend to be more hydrophilic and possess higher surface energy. The surface states obtained by silicon alloying and oxygen incorporation indicate increased silicon oxycarbide bonding states and sp3 bonding states on the surface, and it can be accounted for by the increased surface energy particularly the polar contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号