共查询到20条相似文献,搜索用时 0 毫秒
1.
Various vanadium-containing catalysts were searched for the commercial application in the selective oxidation of H2S to elemental sulfur at low temperatures (less than 250°C) in the presence of excess (more than 35 vol.%) water. In the test of binary oxides, it was found that TiVOx was the only catalyst that could sustain its activity without deactivation at 230°C. The best catalytic activity (85–90% sulfur yield) was obtained when VOx/TiO2 was incorporated with other metals such as Fe, Cr and Mo. Reaction occurred via redox mechanism and the reoxidation of reduced vanadium was the rate-limiting step. A long-term deactivation observed during the reaction was due to slower reoxidation of reduced vanadium by oxygen than the reduction by H2S. Catalytic activities of VOx/SiO2, VOx/TiO2 and V–Fe–Cr–Mo–Ox/TiO2 were well correlated with their redox properties that were observed by TPR/TPO and XPS measurements. 相似文献
2.
Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst 总被引:1,自引:0,他引:1
Kwang-Deog Jung Oh-Shim Joo Seong-Hoon Cho Sung-Hwan Han 《Applied Catalysis A: General》2003,240(1-2):235-241
The room temperature wet catalytic oxidation was conducted in a batch reactor with Fe/MgO catalyst. Fe/MgO catalyst was prepared by the dissolution–precipitation method. XRD and temperature-programmed reductions (TPR) indicate that Fe oxide in the Fe/MgO is finely dispersed in the MgO support. The high H2S removal capacities of Fe/MgO can be explained by the finely dispersed iron oxide MgO. The H2S removal capacities of Fe/MgO are dependent on oxygen partial pressure (1.0 g H2S/gcat in air and 2.6 g H2S/gcat in oxygen). The valence state analysis of Fe/MgO catalyst suggests that the H2S oxidation on Fe/MgO can occur by a redox couple reaction, reducing Fe3+ into Fe2+ by H2S and oxidizing Fe2+ to Fe3+ by O2. 相似文献
3.
A novel technology of removing H2S with cupric chloride solution was developed in this paper. Cupric as the form of CuS deposition, the CuS produced was then oxidized by excessive cupric ion in another reactor meanwhile cupric ion that has been consumed can be recovered by the oxidization of with oxygen in air, and the solution can be circulated. Moreover, the leaching kinetics of CuS by cupric ion was studied. The removal efficiency of H2S is close to 100%, and the required operating condition is mild. Compared with other wet oxidiza-tion methods, no raw material is consumed except O2 in air, the process has no secondary pollution and no problem of degradation and scale, and the absorbent is much stable and reliable. 相似文献
4.
Marc J. Ledoux Cuong Pham-Huu Nicolas Keller Jean-B. Nougayr de Sabine Savin-Poncet Jacques Bousquet 《Catalysis Today》2000,61(1-4):157-163
Very high activity and selectivity could be achieved for the direct oxidation of H2S into elemental sulfur at low reaction temperature (40–60°C), on nickel sulfide supported SiC catalyst. The heterogeneous nature of the support surface (hydrophilic and hydrophobic areas) could explain the important role played by water to maintain a high and stable H2S conversion level. The formation of a very active superficial nickel oxysulfide phase was proposed in order to explain the activation period necessary at reaction temperatures <60°C. Total selectivity for sulfur was attributed to the very low reaction temperature and the absence of any microporosity in the support. 相似文献
5.
铈锆固溶体CexZr1-xO2上H2S的选择性催化氧化性能 总被引:1,自引:0,他引:1
采用共沉淀法合成一系列具有不同Ce/Zr物质的量比的铈锆固溶体CexZr1-xO2,考察Ce/Zr比例对H2S选择氧化反应催化活性的影响。通过XRD、BET、Raman、XPS、CO2-TPD、O2-TPD、H2-TPR等手段对铈锆固溶体的晶体结构、表面性质、碱性位以及氧化还原性等进行表征。结果表明,所有的铈锆固溶体催化剂均可以在化学计量比的氧气下具有优良的低温催化活性,催化活性随着Ce/Zr比例的提高而增加,其中Ce0.9Zr0.1O2活性最高,(160~260) ℃转化率均保持在95%以上,在180 ℃时硫收率可达到97%,这主要是因为Ce0.9Zr0.1O2具有最多的中度碱性位、活性位数量和强的氧化还原性。同时推测Ce4+为催化反应的活性位,并遵循氧化还原机理。此外,催化剂的失活主要是由于催化剂表面生成硫酸盐物种,消耗了活性组分Ce4+。 相似文献
6.
Jae Hoon Uhm Moon Young Shin Jiang Zhidong Jong Shik Chung 《Applied catalysis. B, Environmental》1999,22(4):5223-303
CrOx and CrOx supported on SiO2 have been found to be active for the selective oxidation of hydrogen sulfide to elemental sulfur. The catalysts show maximum sulfur yield at a stoichiometric ratio of O2/H2S, 0.5. Amorphous Cr2O3 exhibits higher yield of sulfur and has stronger resistance against water than supported Cr/SiO2, especially at low temperatures. At high temperatures above 300°C, the sulfur yield over the supported catalyst becomes similar to amorphous Cr2O3 because the Claus reaction occurring on the silica support removes SO2 to increase the sulfur yield. Active sites are the amorphous monochromate species that can be detected as a strong temperature programmed reduction (TPR) peak at 470°C. Catalytic activity can be correlated with the amount of labile lattice oxygen and the strength of Cr–O bonding. The reaction proceeds via the redox mechanism with participation of lattice oxygen. 相似文献
7.
To define the roles of H2S and pyrrhotite in high temperatures employed for normal coal liquefaction, diphenylmethane hydrocracking with H2 and H2-H2S was carried out with and without pyrrhotite. H2S promotes diphenylmethane hydrocracking with H2 both in the presence and absence of pyrrhotite, and the reaction is dependent upon the H2S pressure in both instances. It is also dependent on the H2 pressure when pyrrhotite is present. The results are interpreted in terms of H2S acting as a hydrogen transfer catalyst. 相似文献
8.
Partial oxidation of H2S over alumina catalysts in a short-contact-time reactor (SCTR) has been shown to yield hydrogen, sulfur and water as the predominant products. At a set temperature of 400 °C and a contact time of 13 ms, the conversion of H2S is 64.6% with a H2 selectivity of 20.8%, while the amount of SO2 in the products was <0.5% of the input H2S. 相似文献
9.
Patrick Nguyen Jean-Mario Nhut David Edouard Charlotte Pham Marc-Jacques Ledoux Cuong Pham-Huu 《Catalysis Today》2009,141(3-4):397
Over the last decades, sulfur recovery from the H2S-containing acid gases (issued from oil refineries or natural gas plants) has become more and more important due to the ever increasing standards of efficiency required by environmental protection pressures. The H2S-tail gas was directly oxidized by oxygen to yield elemental sulfur. A significant improvement of the H2S conversion and selectivity has been developed, however, the support which is the core of the process still needs to be improved. Recently, β-SiC has been reported to be an efficient and selective catalyst support for the H2S-to-S reaction. One expected reason for this superior yield should be due to the high thermal conductivity of the support. The high thermal conductivity of the silicon carbide plays an important role in the maintenance of the high selectivity by avoiding the formation of hot spots on the catalyst surface which could favor secondary reactions. On the other hand, insulator supports such as alumina exhibit a poor selectivity due to catalyst surface temperature runaway. 相似文献
10.
分别以碳纳米管(CNTs)和68%浓HNO3处理的CNTs为载体,采用超声辅助的浸渍法制备负载型Cu O-CeO_2复合氧化物催化剂,用于富氢气中CO选择氧化。采用XPS和LRS对预处理前后CNTs管的结构与表面性质进行研究。采用XRD和H2-TPR对催化剂结构进行表征。结果表明,经浓HNO3处理的CNTs载体表面含氧官能团—COOH相对含量提高了约68%,且表面缺陷增多,有助于催化剂活性组分的沉积和分散。以此负载的Cu O-CeO_2催化剂上Cu O物种具有较好的分散性,晶粒尺寸较小,催化剂表现出强的低温氧化还原能力,且表面CO氧化活性位增多,对CO选择性氧化具有低温高活性,T50低至90℃,反应温度低于140℃保持高选择性,且CO完全转化反应温度窗口拓宽宽至30℃。 相似文献
11.
H. Mehmet Tasdemir Yavuz Yagizatli Sena Yasyerli Nail Yasyerli Gulsen Dogu 《加拿大化工杂志》2019,97(12):3125-3137
In this study, a new synthesis method was developed for the production of modified sol‐gel alumina (SG‐M) for the selective oxidation of H2S to elemental sulphur. The catalytic activity of this modified alumina without any active metal incorporation was then compared with the activity of commercial alumina (alumina‐com) for H2S selective oxidation. The N2 adsorption‐desorption isotherm showed that the SG‐M alumina synthesized in this work has a mesoporous structure with well‐defined hysteresis loops. Both alumina materials showed a γ‐Al2O3 crystalline phase with an amorphous structure in their crystal structure. The surface acidity of the alumina materials was determined using pyridine‐adsorbed FTIR analyses, and both alumina showed Lewis acid sites on their surfaces. The catalytic activity tests were performed at 250°C using a feed ratio of O2/H2S:0.5. The complete conversion of H2S over SG‐M was achieved during 400 minutes of reaction time. However, the commercial alumina lost its activity at earlier reaction times. Lewis acid sites and surface hydroxyl groups caused the alumina to be active in H2S selective catalytic oxidation, and the formation of Al‐S bonds, observed when the H2S conversion fell, caused a decrease in the catalytic activity of the alumina materials. A high sulphur yield (≥95%) was obtained over SG‐M, even though there was no active metal incorporation and even in the presence of excess oxygen. Considering the catalytic activities, the new sol‐gel alumina synthesized in this work is superior to commercial alumina. It was concluded that, as a catalyst without any active metal, SG‐M is a promising catalyst in H2S selective oxidation to sulphur. 相似文献
12.
The kinetics of CO and H2 oxidation over a CuO-CeO2 catalyst were simultaneously investigated under reaction conditions of preferential CO oxidation (PROX) in hydrogen-rich mixtures with CO2 and H2O. An integral packed-bed tubular reactor was used to produce kinetic data for power-law kinetics for both CO and H2 oxidations. The experimental results showed that the CO oxidation rate was essentially independent of H2 and O2 concentrations, while the H2 oxidation rate was practically independent of CO and O2 concentrations. In the CO oxidation, the reaction orders were 0.91, −0.37 and −0.62 with respect to the partial pressure of CO, CO2 and H2O, respectively. In the H2 oxidation, the orders were 1.0, −0.48 and −0.69 with respect to the partial pressure of H2, CO2 and H2O, respectively. The activation energies of the CO oxidation and the H2 oxidation were 94.4 and 142 kJ/mol, respectively. The rate expressions of both oxidations were able to predict the performance of the PROX reactor with accuracy. The independence between the CO and the H2 oxidation suggested different sites for CO and H2 adsorption on the CuO-CeO2 catalyst. Based on the results, we proposed a new reaction model for the preferential CO oxidation. The model assumes that CO adsorbs selectively on the Cu+ sites; H2 dissociates and adsorbs on the Cu0 sites; the adsorbed species migrates to the interface between the copper components and the ceria support, and reacts there with the oxygen supplied by the ceria support; and the oxygen deficiency on the support is replenished by the oxygen in the reaction mixture. 相似文献
13.
Sulfidation of trimetallic CoNiMo/Al2O3 catalysts was studied by thermogravimetry at 400 °C under flow and pressure conditions. Results were compared with those obtained on prepared and industrial CoMo/Al2O3 and NiMo/Al2O3 catalysts. The amount of sorbed H2S on the sulfided solids was measured at 300 °C in the H2S pressure range 0–3.5 MPa at constant H2 pressure (3.8 MPa). The adsorption isotherms were simulated using a model featuring dissociated adsorption of H2S on supported metal sulfides and bare alumina. The amount of sulfur-vacancy sites could thus be determined under conditions close to industrial practice. A relationship with activity results for thiophene HDS and benzene hydrogenation was sought for. 相似文献
14.
Moon Young Shin Dae Won Park Jong Shik Chung 《Applied catalysis. B, Environmental》2001,30(3-4):409-419
Various vanadium-based binary and multi-metallic oxides were prepared and their catalytic activities for the selective oxidation of H2S to elemental sulfur were tested. Because the deactivation of vanadium-based catalysts originated from a relatively slow rate of reoxidation of the reduced vanadium oxide [PhD thesis, Pohang University of Science and Technology, 2000], the focus was given to increase the redox ability, especially in the reoxidation step. Stable and improved activity was observed in BiVOx, TiVOx, and ZrV2O7 at 250°C, but TiVOx was the only catalyst that could maintain its activity below 250°C. Much higher activity was observed when VOx/TiO2 became multi-metallic by the incorporation of Fe, Cr, and Mo. TPR–TPO, microbalance, and XPS techniques were used to explain the redox properties of VOx/SiO2, VOx/TiO2, and V-Fe-Cr-Mo-Ox/TiO2 catalysts in the reoxidation step. 相似文献
15.
M. A. Uguina D. P. Serrano R. Sanz J. L. G. Fierro M. L pez-Granados R. Mariscal 《Catalysis Today》2000,61(1-4):263-270
The deactivation of the TS-1 zeolite during styrene oxidation with H2O2 has been investigated by a series of kinetic experiments and further characterisation of the spent catalysts. A decline of the TS-1 activity with time has been observed, especially during the first hours of reaction. TG and TPD–MS analyses of the spent catalysts show that the main products occluded within the zeolite pores are styrene, phenylacetaldehyde and benzaldehyde. The presence of styrene oligomeric compounds has also been detected, although it is postulated they are formed mainly in the solution outside the zeolite pores. Diffusional hindrances due to the high degree of occupancy of the TS-1 pores, as well as, a strong adsorption of styrene, phenylacetaldehyde and benzaldehyde on the Ti sites are proposed as the main reasons for the TS-1 deactivation. These phenomena are enhanced at lower reaction temperatures, which cause a faster initial deactivation. Likewise, longer reaction times favour preferential chemisorption of aldehydes versus styrene. 相似文献
16.
High thermal conductive β-SiC for selective oxidation of H2S: A new support for exothermal reactions
P. Nguyen D. Edouard J.-M. Nhut M.J. Ledoux Ch. Pham C. Pham-Huu 《Applied catalysis. B, Environmental》2007,76(3-4):300-310
This study aims at synthesizing a new by substituting 1 atom% Pd2+ in ionic state in TiO2 in the form of Ti0.99Pd0.01O1.99 with oxide-ion vacancy. The catalyst was synthesized by solution combustion method and was characterized by XRD and XPS. The catalytic activity was investigated by performing CO oxidation, hydrocarbon oxidation and NO reduction. A reaction mechanism for CO oxidation by O2 and NO reduction by CO was proposed. The model based on CO adsorption on Pd2+ and dissociative chemisorption of O2 in the oxide-ion vacancy for CO oxidation reaction fitted the experimental for CO oxidation. For NO reduction in presence of CO, the model based on competitive adsorption of NO and CO on Pd2+, NO chemisorption and dissociation on oxide-ion vacancy fitted the experimental data. The rate parameters obtained from the model indicated that the reactions were much faster over this catalyst compared to other catalysts reported in the literature. The selectivity of N2, defined as the ratio of the formation of N2 and formation of N2 and N2O, was very high compared to other catalysts and 100% selectivity was reached at temperature of 350 °C and above. As the N2O + CO reaction is an intermediate reaction for NO + CO reaction, it was also studied as an isolated reaction and the rate of the isolated reaction was less than that of intermediate reaction. 相似文献
17.
Qingjun Chen Jitong Wang Xiaojun Liu Xin Zhao Wenming Qiao Donghui Long Licheng Ling 《Carbon》2011,(12):3773-3780
Carbon nanotubes (CNTs) were made alkaline by impregnation with Na2CO3 and used for the direct oxidation of H2S into sulfur at 30 °C. The alkaline CNTs before and after H2S oxidation were characterized by N2 adsorption, scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetry analysis. The effects of Na2CO3 loading and the structure of the CNTs on the catalytic activity of alkaline CNTs were investigated. Results indicated that the saturation sulfur capacity of alkaline CNTs was up to 1.86 g H2S/g catalyst, which was about 3.9 times higher than that of a common commercial H2S oxidation catalyst. The introduction of Na2CO3, which provided alkalinity needed for H2S dissociation, significantly enhanced the catalytic performance. The optimum content of Na2CO3 loading was determined to be 20 wt.% in the CNTs. The catalytic performance was also dependent on the structure of the CNTs, and the single-walled CNTs with the smallest tube diameter exhibited the highest sulfur capacity. Tangled CNTs provided their external voids to store the sulfur produced, which was a key feature of this high-performance CNT catalyst. 相似文献
18.
We compare the effects of adding large amounts of H2 to 3 ms partial oxidation reactions, ethane to ethylene, propane to olefins, and methane and ammonia to HCN. It is found that H2 can be safely added at the 2/1 H2/O2 stoichiometry in the presence of these fuels without any homogeneous reactions, flames, or explosions. For all of these systems the addition of H2 increases the selectivities to the desired products while strongly decreasing CO and CO2. Addition of H2 forces water formation near the front face of the catalyst which consumes O2 and allows dehydrogenation processes to dominate. 相似文献
19.
The objective of this study is to evaluate the effect of low-level hydrogen sulfide (H2S) on carbon dioxide (CO2) corrosion of carbon steel in acidic solutions, and to investigate the mechanism of iron sulfide scale formation in CO2/H2S environments. Corrosion tests were conducted using 1018 carbon steel in 1 wt.% NaCl solution (25 °C) at pH of 3 and 4, and under atmospheric pressure. The test solution was saturated with flowing gases that change with increasing time from CO2 (stage 1) to CO2/100 ppm H2S (stage 2) and back to CO2 (stage 3). Corrosion rate and behavior were investigated using linear polarization resistance (LPR) technique. Electrochemical impedance spectroscopy (EIS) and potentiodynamic tests were performed at the end of each stage. The morphology and compositions of surface corrosion products were analyzed using scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that the addition of 100 ppm H2S to CO2 induced rapid reduction in the corrosion rate at both pHs 3 and 4. This H2S inhibition effect is attributed to the formation of thin FeS film (tarnish) on the steel surface that suppressed the anodic dissolution reaction. The study results suggested that the precipitation of iron sulfide as well as iron carbonate film is possible in the acidic solutions due to the local supersaturation in regions immediately above the steel surface, and these films provide corrosion protection in the acidic solutions. 相似文献