首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

2.
Tool crater wear depth modeling in CBN hard turning   总被引:1,自引:0,他引:1  
Yong Huang  Ty G. Dawson 《Wear》2005,258(9):1455-1461
Hard turning has been receiving increased attention because it offers many possible benefits over grinding in machining hardened steel. The wear of cubic boron nitride (CBN) tools, which are commonly used in hard turning, is an important issue that needs to be better understood. For hard turning to be a viable replacement technology, the high cost of CBN cutting tools and the cost of down-time for tool changing must be minimized. In addition to progressive flank wear, microchipping and tool breakage (which lead to early tool failure) are prone to occur under aggressive machining conditions due to significant crater wear and weakening of the cutting edge. The objective of this study is to model the CBN tool crater wear depth (KT) to guide the design of CBN tool geometry and to optimize cutting parameters in finish hard turning. First, the main wear mechanisms (abrasion, adhesion, and diffusion) in hard turning are discussed and the associated wear volume loss models are developed as functions of cutting temperature, stress, and other process information. Then, the crater wear depth is predicted in terms of tool/work material properties and process information. Finally, the proposed model is experimentally validated in finish turning of hardened 52100 bearing steel using a low CBN content tool. The comparison between model predictions and experimental results shows reasonable agreement, and the results suggest that adhesion is the dominant wear mechanism within the range of conditions that were investigated.  相似文献   

3.
Tool wear and machining performance of hardened AISI M2 steel in hard turning has been studied. Ceramic tools were used in the cutting tests without coolants, and the workpiece was heat treated to increase its hardness up to Re 60. Cutting forces, temperature, and tool wear were measured in the experiments and the effects of cutting conditions on these were investigated. Important aspects from the research are summarized as follows: 1. Flank wear was the dominant wear mode on the ceramic tool insert in hard turning. In contrast, crater wear was very small due to the ceramics high resistance against chemical reactions at high temperature. A notch was unlikely to be formed in the tool.

2. The initial flank wear rate mainly depends on the feed rate. High feed rates cause a high initial flank wear rate.

3. Depth of cut was the most important cutting parameter to affect cutting force variation, and the cutting force increased due to tool wear.

  相似文献   

4.
The effects of work material on tool wear   总被引:1,自引:0,他引:1  
C. Y. H. Lim  P. P. T. Lau  S. C. Lim 《Wear》2001,250(1-12):344-348
Wear maps showing the wear behaviour of titanium carbide (TiC)-coated cemented carbide tools during dry turning of various types of steel have been presented in earlier studies. The maps have demonstrated that tool wear rates vary with cutting speeds and feed rates used. They have also shown that there is a range of cutting conditions, called the safety zone, within which tool wear rates are the lowest. This paper further examines, using the wear mapping methodology, the effects of different grades of steel workpieces on the wear of TiC-coated carbide tools. Wear maps constructed for the machining of AISI 1045 and 4340 steels show that flank wear is generally more severe when machining the AISI 4340 grade, especially at high cutting speeds and feed rates. Nevertheless, the contour and location of the safety zone on the wear maps for both grades of steels correspond to that revealed in previous work on general steel grades.  相似文献   

5.
The development of a general 3D model for a corner-radiused, chamfered, edge-honed cutting worn tool is elaborated. The surface of the cutting tool was constructed using one angular scalar specifying location on the corner radius and leading/trailing edges and another non-dimensional scalar for specifying location on the relief, edge-hone, chamfer and tool-top. Then, for given geometric parameters and cutting conditions, the angular extremities of contact on the corner radius and leading/trailing edges was obtained and validated. The kinematic surface finish on the workpiece surface including the Brammertz and sideflow effects was then simulated in typical hard turning. The model was expanded to allow wiper edges and flank wear. A simplified crater wear model was adopted for continuous hard turning to allow virtual cross-sectioning. Accurate estimation of flank and crater wear volume was also enabled. The model results for the fresh tool agreed with well-known trends from 2D modeling. Preliminary results indicate that there exists a geometric basis for higher Ra and Rt for a worn tool. The Brammertz effect simulation, though not in agreement with the data of Knuefermann (2003 Knuefermann , M.M.W. ( 2003 ) Machining surfaces of optical quality by hard turning, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, UK . [Google Scholar]) corroborated the modification proposed therein.  相似文献   

6.
A commercially available insert has been used to turn an AISI 4340 steel at speeds placed between 325 and 1000 m/min. The flank wear was measured in connection to cutting time. This is to determine the tool life defined as the usable time that has elapsed before the flank wear has reached the criterion value.It is shown that an increase in cutting speed causes a higher decrease of the time of the second gradual stage of the wear process. This is due to the thin coat layer which is rapidly peeled off when high-speed turning.The investigation included the realization of a wear model in relation to time and to cutting speed. An empirical model has also been developed for tool life determination in connection with cutting speed.On the basis of the results obtained it is possible to set optimal cutting speed to achieve the maximum tool life.  相似文献   

7.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

8.
Due to technical and economical factors, hard turning is competing successfully with the grinding process in the industries. Many practical applications require components to be hardened in order to improve their wear behavior. Higher productivity and good surface quality are the requirements of the modern industries. However, tool wear is the major problem in hard turning. The tool wear models, used to assess the performance of hard turning process, play an important role in predicting the surface quality. So, in the present work, an attempt has been made to develop an analytical tool wear model for the mixed ceramic inserts during the hard turning of bearing steel incorporating abrasion, adhesion, and diffusion wear mechanisms. The new model developed can reliably be used to assess the wear of the mixed ceramic tools within the domain of the parameters. It has been observed that tool wear is increasing with the increase in cutting speed, feed, and effective rake angle. However, it has been found to be slightly decreasing with the increase in nose radius. The proposed model was validated by conducting experiments. It could be seen that the model was capable of predicting the flank wear using the cutting parameters and tool geometry.  相似文献   

9.
This paper describes the notch and flank wear specific to a SiC whisker reinforced alumina tool in air jet assisted (AJA) turning of nickel-base superalloy Inconel 718 at high cutting speeds. An AJA machining experiment has revealed that the air jet applied to the tool tip in addition to coolant dramatically reduces the depth-of-cut notch wear. As a result, the width of flank wear, but not the size of notch wear, determined the life of a ceramic tool in AJA machining of Inconel 718. This is a reason for the large extension and small variation of the tool life when high speed AJA machining is adopted. The maximum tool life length reached 2160 m at a cutting speed of 660 m/min under the given cutting conditions. Finally, the mechanisms of the notch and flank wear of a SiC whisker reinforced alumina tool in AJA machining are discussed from the viewpoints of tribochemical reactions and tool wear anisotropy.  相似文献   

10.
The focus of this paper is the continuous turning of hardened AISI 52100 (~63HRc) using coated and uncoated ceramic Al2O3–TiCN mixed inserts, which are cheaper than cubic boron nitride (CBN) or polycrystalline cubic boron nitride (PCBN). The machinability of hardened steel was evaluated by measurements of tool wear, tool life, and surface finish of the workpiece. Wear mechanisms and patterns of ceramic inserts in hard turning of hardened AISI 52100 are discussed. According to the results obtained, fracture and chipping type damages occur more frequently in uncoated tools, whereas crater wear is the more common type of damage in TiN coated tools. Most important result obtained from the study is that TiN coating and crater wear affect chip flow direction. In uncoated ceramic tool, the crater formation results in decrease of chip up-curl radius. Besides, uncoated cutting tool results in an increase in the temperature at the tool chip interface. This causes a thermal bi-metallic effect between the upper and lower sides of the chip that forces the chip to curl a smaller radius. Chips accumulate in front of the tool and stick to the workpiece depending on the length of the cutting time. This causes the surface quality to deteriorate. TiN coating not only ensures that the cutting tool is tougher, but also ensures that the surface quality is maintained during cutting processes.  相似文献   

11.
In this paper, an attempt is made to evaluate the self-propelled rotary carbide tool performance during machining hardened steel. Although several models were developed and used to evaluate the tool wear in conventional tools, there were no attempts in open literature for modeling the progress of tool wear when using the self-propelled rotary tools. Flank wear model for self-propelled rotary cutting tools is developed based on the work-tool geometric interaction and the empirical function. A set of cutting tests were carried out on the AISI 4340 steel with hardness of 54–56 HRC under different cutting speeds and feeds. The progress of tool wear was recorded under different interval of time. A genetic algorithm was developed to identify the constants in the proposed model. The comparison of measured and predicted flank wear showed that the developed model is capable of predicting the rate of rotary tool flank wear progression.  相似文献   

12.
High-pressure coolant (HPC) delivery is an emerging technology that delivers a high-pressure fluid to the tool and workpiece in machining processes. High fluid pressure allows for better penetration of the fluid into the cutting zone, enhancing the cooling effect, and decreasing tool wear through lubrication of the contact areas. The main objective of this work is to understand how tool wear mechanisms are influenced by fluid pressure under different cutting speeds in the finish turning of AISI 1045 steel using coated carbide tools. The main finding was that the use of a lower cutting speed (v c ?=?490 m/min) in dry cutting resulted in tool life close to that obtained with cutting fluid, but when the cutting speed was increased (v c ?=?570 m/min), the high-pressure coolant was effective in prolonging the life of the cutting tool. It was also concluded that, regardless of the cutting speed and cooling/lubrication system, the wear mechanisms were the same, namely abrasion and attrition.  相似文献   

13.
The machining performance of monolithic and composite silicon nitride and Al2O3-based cutting tools in continuous turning of Inconel 718 was examined. The character of tool wear has been found to vary, depending on the feed rate and cutting speeds. At a lower cutting speed, of 120 m/min, tool life is restricted by depth-of-cut notching, while at high cutting speeds (300 m/min), tools fail due to nose wear and fracture. The sensitivity of monolithic Si3N4 and Al2O3 to depth-of-cut notching was found to he significantly reduced with the addition of SiC whiskers, and to a lesser extent with TiC particulates. The ceramic composites also exhibited resistance to nose and flank wear that was higher than that of the monoliths. The internal stress distribution for the cutting tool has been calculated using the finite element method and is the basis for explaining fracture beneath the rake face. Cutting tool wear results are discussed in terms of chemical and mechanical properties of the ceramic tool material, abrasive wear, thermal shock resistance, and metal cutting conditions.  相似文献   

14.
Abstract

The proposed work deals with the investigation of magnetorheological based minimum quantity lubrication of graphene oxide (GO) based jojoba oil as bio-lubricant on machinability and tool wear mechanism of turning Monel K500 alloy. Experiments were carried out for dry, flooded, minimum quantity lubrication (MQL) and magnetorheological (MR–MQL) conditions using medium duty lathe. The process parameters include the cutting speed 95, 110, 125?m/min, feed rate 0.050, 0.075, 0.1?mm/rev and depth of cut 0.25, 0.50, 0.75?mm for the output responses such as surface roughness, cutting temperature and tool flank wear. The results indicated that GO-based bio-lubricant MR–MQL reduced coefficient of friction (COF) of 0.051 and wetting angle of 6°, as well as improved machining performance such as cutting temperature of 145?°C, the surface roughness of 0.614?µm, flank wear of 0.18?mm with enhanced lubrication regime under extreme wear conditions.  相似文献   

15.
In precision hard turning, tool flank wear is one of the major factors contributing to the geometric error and thermal damage in a machined workpiece. Tool wear not only directly reduces the part geometry accuracy but also increases the cutting forces drastically. The change in cutting forces causes instability in the tool motion, and in turn, more inaccuracy. There are demands for reliably monitoring the progress of tool wear during a machining process to provide information for both correction of geometric errors and to guarantee the surface integrity of the workpiece. A new method for tool wear monitoring in precision hard turning is presented in this paper. The flank wear of a CBN tool is monitored by feature parameters extracted from the measured passive force, by the use of a force dynamometer. The feature parameters include the passive force level, the frequency energy and the accumulated cutting time. An ANN model was used to integrate these feature parameters in order to obtain more reliable and robust flank wear monitoring. Finally, the results from validation tests indicate that the developed monitoring system is robust and consistent for tool wear monitoring in precision hard turning.  相似文献   

16.
Hard turning with ceramic tools provides an alternative to grinding operation in machining high precision and hardened components. But, the main concerns are the cost of expensive tool materials and the effect of the process on machinability. The poor selection of cutting conditions may lead to excessive tool wear and increased surface roughness of workpiece. Hence, there is a need to investigate the effects of process parameters on machinability characteristics in hard turning. In this work, the influence of cutting speed, feed rate, and machining time on machinability aspects such as specific cutting force, surface roughness, and tool wear in AISI D2 cold work tool steel hard turning with three different ceramic inserts, namely, CC650, CC650WG, and GC6050WH has been studied. A multilayer feed-forward artificial neural network (ANN), trained using error back-propagation training algorithm has been employed for predicting the machinability. The input?Coutput patterns required for ANN training and testing are obtained from the turning experiments planned through full factorial design. The simulation results demonstrate the effectiveness of ANN models to analyze the effects of cutting conditions as well as to study the performance of conventional and wiper ceramic inserts on machinability.  相似文献   

17.
本文对Al2O3/TiC陶瓷刀具材料切削加工G4335V高强钢时的切削性能和耐磨性进行了试验研究。结果表明:在低速切削条件下,Al2O3/TiC陶瓷刀具和硬质合金刀具(YT15)的抗后面磨损能力相差不大,而在高速切削条件下,前者的抗后面磨损能力远高于后者。Al2O3/TiC陶瓷刀具前面的磨损形式主要为粘结磨损,后面的磨损形式主要为磨粒磨损。  相似文献   

18.
A type of Si3N4/TiC micro-nanocomposite ceramic cutting tool material was fabricated using Si3N4 micro-matrix with Si3N4 and TiC nanoparticles. Cutting performance of the Si3N4/TiC ceramic cutting tool in dry cutting of hardened steel was investigated in comparison with a commercial Sialon insert. Hard turning experiments were carried out at three different cutting speeds, namely 97, 114, and 156 m/min. Feed rate (f) and depth of cut (a p) were fixed at 0.1 mm/rev and 0.2 mm, respectively. Results showed that cutting temperature increased rapidly to nearly 1000 °C with increasing cutting speed. The two types of cutting tools featured similar wear behavior. However, the Si3N4/TiC micro-nanocomposite ceramic cutting tool exhibited better wear resistance than the Sialon tool. Morphologies of crater and flank wear were observed with a scanning electron microscope. Results indicated that wear variation of the two types of ceramic cutting tools differed in the same conditions. Wear of the Si3N4/TiC micro-nanocomposite ceramic cutting tool is mainly dominated by abrasion and adhesion, whereas that of the Sialon ceramic cutting tool is dominated by abrasion, adhesion, thermal shock cracking, and flaking.  相似文献   

19.
PCD刀具连续切削花岗岩的性能研究   总被引:1,自引:0,他引:1  
用三种不同晶粒尺寸的自制PCD刀具,在三种切削速度下进行了花岗岩的湿式连续切削试验。对刀具前、后刀面的显微形貌特征进行了观测,分析了刀具失效机理,比较了不同晶粒尺寸及不同切削条件下刀具的切削寿命。对刀具后刀面磨损的测量结果表明,在三种切削速度下,粗颗粒PCD刀具显示出更长的刀具寿命;随着切削速度的增加,三种刀具的寿命都有所下降。SEM二次电子图像显示,PCD010和PCD005刀具的磨损机制为硬质点的机械磨损,而晶粒较粗的PCD030刀具的主要磨损机制为机械磨损,同时伴有穿晶磨损。  相似文献   

20.
This paper presents the results of an experimental investigation on the machinability of in situ Al-6061?CTiB2 metal matrix composite (MMC) prepared by flux-assisted synthesis. These composites were characterized by scanning electron microscopy, X-ray diffraction, and micro-hardness analysis. The influence of reinforcement ratio of 0, 3, 6, and 9?wt.% of TiB2 on machinability was examined. The effect of machinability parameters such as cutting speed, feed rate, and depth of cut on flank wear, cutting force and surface roughness were analyzed during turning operations. From the test results, we observe that higher TiB2 reinforcement ratio produces higher tool wear, surface roughness and minimizes the cutting forces. When machining the in situ MMC with high speed causes rapid tool wear due to generation of high temperature in the machining interface. The rate of flank wear, cutting force, and surface roughness are high when machining with a higher depth of cut. An increase in feed rate increases the flank wear, cutting force and surface roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号