首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
板料成形过程的宏观断裂行为依赖于其微观断裂机理,因此成形过程模拟中的断裂准则的准确选择对于断裂预测具有重要意义。以高强钢TRIP780板料为研究对象,设计从剪切到拉伸应力状态的五种断裂试验,结合宏观拉伸试验和扫描电子显微镜(Scanning electron microscope,SEM)分析研究不同应力状态下TRIP780板料的断裂机理,得到不同应力状态下正应力和切应力与断裂机理的关联关系,引入正应力与切应力的影响构建MMC断裂准则,应用于板料压剪应力区间的断裂行为预测。结果表明,反映断裂机理的MMC准则能适用于板料压剪和拉剪变形应力状态下断裂失效的准确预测。  相似文献   

2.
In sheet metal forming operations, the formability of sheet metals is limited by the occurrence of internal damage evolution that eventually yields a localized neck. Thus, designing and optimizing a sheet metal forming process, requires the precise prediction of the forming limits of the sheet materials. Accordingly, the current work attempts to theoretically predict the forming limit diagrams (FLDs) of voided anisotropic sheets using a new version of the Marciniak and Kuczynski (M–K) model. The analysis employs Gologanu–Leblond–Devaux's yield function for materials containing axisymmetric prolate ellipsoidal cavities with random orientations in conjunction with Barlat and Lian's 1989 anisotropic yield criterion. The effect of a void shape parameter on a ductile material under biaxial tensile loading is introduced and examined within the framework of the M–K model, along with the effect of including a first-order strain gradient term in the flow stress. To confirm the validity of the proposed M–K model, the predicted FLDs were compared with experimental results for steel sheets. The predicted forming limits for the voided sheets were found to agree well with the experimental data.  相似文献   

3.
Forming limit curves at neck and at fracture have been experimentally determined, and surfaces of fractured dome specimens have been observed optically and in the SEM, for an automotive AA6111-T4 sheet material. Various continuum ductile fracture criteria from the literature along with the assumptions of power law hardening, Hill’s quadratic yield criterion, and proportionality of stress and strain paths have been utilized for prediction of forming limit curve at fracture and compared with the experimental curve to assess the applicability of the different fracture criteria. The maximum shear stress criterion by Tresca predicts reasonably well the fracture limits of AA6111-T4 sheet material for a range of strain ratios, and is consistent with the microstructural observations. The criterion can be used to predict fracture limit curves from uniaxial tensile data and plane strain limit at fracture. A methodology for incorporating such a ductile fracture criterion into FE simulations of sheet stampings for prediction of fracture is discussed.  相似文献   

4.
In this paper, a methodology is proposed to predict the ductile damage in the sheet metal blanking process using a coupled thermomechanical finite-element method. A constitutive material model combined with the ductile fracture criteria was used. The effect of material softening due to the heat generated during plastic work in a specimen was considered in blanking simulations. To verify the validity of the proposed model, several blanking simulations are performed and the results compared with those obtained from an experimental study. The interaction of fracture initiation and temperature distribution in the sheet metal during the process was studied. The effect of velocity and the clearance on the product shape were examined. It was seen that at high punch speeds the viscous and thermal effects have significant effects on product quality.  相似文献   

5.
In this research, the fracture phenomenon was investigated on flexible roll forming process of channel section using ductile fracture criteria and forming limit diagram (FLD) by considering the effect of anisotropy. For this purpose, a finite element simulation of the process using the ABAQUS software was done. The fracture in this process was evaluated by considering six types of ductile fracture criteria by UMAT subroutine implementation on the FEM software and using FLD criterion. Experimental tests were performed on 27 blanks of Al6061-T6 using flexible roll forming machine made in Shahid Rajaee Teacher Training University (SRTTU). Numerical results were validated by experimental results. In addition, prediction of occurrence and fracture position by ductile fracture criteria and FLD criterion were compared with experimental results; the Argon criterion was chosen as the most appropriate criterion to predict the fracture position and its occurrence. The fracture occurrence was only observed in a 60° bending angle for 1.5- and 2-mm thicknesses, and the fracture position error percentages of the Argon criterion with experiments for these cases were 18.7 and 3.5%, respectively. Also, the effects of parameters such as sheet thickness, bending radius, and bending angle on the fracture phenomenon by using the selected criterion of Argon were studied.  相似文献   

6.
This paper presents a phenomenological model of ductile fracture for the API X65 steel using the Gurson–Tvergaard–Needleman (GTN) model. Experimental tests and FE damage simulations using the GTN model are performed for smooth and notched tensile bars, from which the parameters in the GTN model are calibrated. Comparison of experimental data of pre-strained, notched tensile and fracture toughness tests with finite element (FE) damage analyses show good agreements, suggesting the validity of the calibrated parameters. As application, the developed GTN model is applied to predict the pre-strain effect on deformation and fracture and the results are compared with experimental data.  相似文献   

7.
Ductile fracture of metal often occurs in the plastic forming process of parts.The establishment of ductile fracture cri-terion can effectively guide the selection of process parameters and avoid ductile fracture of parts during machining.The 3D ductile fracture envelope of AA6063-T6 was developed to predict and prevent its fracture.Smooth round bar tension tests were performed to characterize the flow stress,and a series of experiments were conducted to charac-terize the ductile fracture firstly,such as notched round bar tension tests,compression tests and torsion tests.These tests cover a wide range of stress triaxiality(ST)and Lode parameter(LP)to calibrate the ductile fracture criterion.Plas-ticity modeling was performed,and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments.Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr-Coulomb(MMC)model and Bai-Wierzbicki(BW)model to develop the 3D ductile fracture envelope.Finally,two ductile damage models were proposed based on the 3D fracture envelope of AA6063.Through the comparison of the two models,it was found that BW model had better fitting effect,and the sum of squares of residual error of BW model was 0.9901.The two models had relatively large errors in predicting the fracture strain of SRB tensile test and torsion test,but both of the predicting error of both two models were within the acceptable range of 15%.In the process of finite element simulation,the evolution process of ductile fracture can be well simulated by the two models.However,BW model can predict the location of fracture more accurately than MMC model.  相似文献   

8.
Fracture toughness is one of the most important mechanical properties for sheet metal in many applications. However not enough attention has been paid to the effects of laser forming conditions on fracture toughness of sheet metal. This paper presents an integrated fracture toughness model to study fracture toughness of sheet metal after laser forming. Microstructure, distribution of residual stresses and geometry of sheet metal specimen are considered in the model. Results of residual stress from microstructure-integrated finite element modelling of laser forming are incorporated in the model. Low carbon steel is used in this paper to validate the model. The results from the fracture toughness study are found to be consistent with microstructure analysis .  相似文献   

9.
The incremental sheet forming processes (ISF) are attracting lots of attentions due to their advantages on rapid prototyping, without special dies and short lead time. The numerical simulation can be a valid method to investigate the forming process and predict the defects. In this study, an extended fully coupled ductile damage model with mixed nonlinear hardening was used to simulate the ISF process. At the same time, the yield surface distortion was also considered in this model, which can enhance the capability of modeling metallic material behavior under complex loading paths. Afterwards, some simulations were conducted with the proposed model. Additionally, one tension-shear orthogonal loading test was assigned on the one representative element in order to investigate the loading path effect during ISF process. By comparing the equivalent plastic strain and ductile damage evolution of the blank, the influence of the yield surface distortion on the ISF process was proved.  相似文献   

10.
Ductile fracture criterion is key limitation parameter in material forming. Accuracy predicting surface and internal failure in plastic deformation process affects on the technology design of workpiece and die greatly. Tension, compression, torsion and shearing test on 45# steel are utilized for providing the experimental values of the critical values at fracture, and 11 widely used ductile fracture criterion are selected to simulate the physical experiments and their relative accuracy for predicting and quantifying fracture initiation sites are investigated. The comparing results show that metal forming process under high triaxiality can be estimated successively using both Normalized Cockcroft-latham and the Brozzo ductile fracture criteria, but the Ayada and general Rice-Tracey model work very well for the low triaxiality cases.  相似文献   

11.
31Si2MnCrMoVE钢是为符合固体火箭发动机壳体设计需要而专门研制的超高强度钢。随着冶炼技术的进步,31Si2MnCrMoVE钢断裂韧度不断提高,构件采用的板厚也越来越薄。由于较高的断裂韧度和较小的板厚,给钢板表面裂纹断裂韧度测试带来困难,韧带尺寸偏小,难以满足有效性判据。这种情况下,不应该用线弹性断裂力学方法评价材料的断裂韧度,而应采用弹塑性断裂力学测试材料的延性断裂韧度JIC。基于以上原因,在条件断裂韧度不满足有效性判据的情况下,采用试验与有限元分析相结合的方法,通过试验测出裂纹启裂时的条件载荷,用有限元法计算出在条件载荷作用下的延性断裂韧度JIC,再用断裂力学理论转换成表面裂纹断裂韧度KIe。用JIC作为断裂参量,就必须分析J积分的有效性,因此讨论超高强度钢表面裂纹前缘的J守恒和J主导的有效性,从而为固体火箭发动机设计提供依据。  相似文献   

12.
This paper deals with micromechanical modeling of ductile damage and its effects (coupling) on the plastic behavior of FCC polycrystalline metallic materials. The ‘fully coupled’ constitutive equations are written in the framework of rate-dependent polycrystalline plasticity where a ‘ductile’ damage variable has been introduced at a crystallographic slip system (CSS) scale in order to describe the material degradation by initiation, growth and coalescence of microdefects inside the aggregate. Both, theoretical and numerical (FEA) aspects of the proposed micromechanical coupled model are presented. The ability of the obtained model to predict the plastic strain localization, due to the ductile damage effect, in the classical tensile test is carefully analyzed. Application is also made to the fracture prediction in deep drawing of a cylindrical cup using a thin sheet. Finally, some concluding remarks and perspectives are pointed out.  相似文献   

13.
热冲压成形过程细观损伤演化机理研究   总被引:3,自引:1,他引:2  
基于Gurson-Tvergaard-Needleman(GTN)细观损伤模型,扩展其在平面应力、壳单元问题中的应力更新数值算法,研究高强度硼钢热冲压成形过程中板材内部的损伤演化行为。采用响应曲面中心复合试验设计和遗传优化算法,系统地阐述高温下GTN损伤参数的识别方法并获取了热成形高强度硼钢22Mn B5在高温下(600~800℃)的损伤特征参数(0,,,N Ff f f fc)。对耦合损伤的高强度钢板NAKJIMA凸模胀形热冲压过程进行有限元仿真预测,并与试验结果进行对比分析。结果表明:运用响应曲面法确定热冲压高温板材损伤参数的方法是可行的,同时采用GTN损伤模型可以准确模拟高强度钢板热冲压过程中的开裂行为。  相似文献   

14.
板料冲压成形破坏判断准则的研究进展   总被引:2,自引:1,他引:2  
分析板料冲压成形中有无明显集中缩颈的韧性破裂、剪切破裂判断准则的研究现状。比较成形极限图以及韧性破裂准则在判断板料破坏中各自的优缺点。针对当前有限元分析软件中的破坏准则用于判断板料局部小特征弯曲强化的成形极限或是先进高强钢板在缩颈前产生剪切破裂等问题所存在的局限性,综述上述特殊问题的研究进展。提出建立沿横、纵两个方向拉伸弯曲下的极限判据对于预测板料局部小特征弯曲的成形极限将更有普遍意义。同时有必要进一步研究先进高强钢板成形的剪切破裂机理,并建立可以有效预测先进高强钢板剪切破裂的有限元模拟失效判据。研究板料成形的上述破坏问题及其判断准则,对于丰富与发展塑性成形理论和指导实际生产具有重要的理论意义和工程应用价值。  相似文献   

15.
镁合金板材温热成形韧性破裂准则   总被引:1,自引:1,他引:0  
针对镁合金板材温热成形数值模拟过程中无法精确判断材料损伤破裂失稳的技术难题,建立考虑温度效应的镁合金板材温热成形韧性破裂准则;基于单向拉伸试验和温热成形极限试验,采用试验和数值模拟相结合的研究方法,确定镁合金板材温热成形韧性破裂准则中的材料参数;以建立的考虑温度效应的镁合金板材韧性破裂准则作为判断破裂的标准,对AZ31镁合金板材的温热成形极限进行预测,并且通过温热拉延试验进行试验验证。研究结果表明,考虑温度效应的镁合金板材韧性破裂准则适合镁合金温热成形数值模拟,应用建立的韧性破裂准则成功的预测板材温热破裂方式,揭示板材温热成形韧性破裂机理,预测结果与试验结果体现较好的一致性。  相似文献   

16.
St14钢板冲压成形摩擦特性研究   总被引:4,自引:1,他引:3  
分析了拉深加工过程中的摩擦问题,介绍了国内外金属板料深摩擦研究现状。指出探针法相对真实地反映拉深过程中法兰处的摩擦规律,使用该探针法测试系统研究了St14钢材在成形方盒件过程中的摩擦特性,分析结果表明了该系统的合理性和实用性。  相似文献   

17.
To predict limit strains in biaxial stretching of sheet metals, a criterion for ductile fracture is combined with the finite element simulation. The limit strains are determined by substituting the values of stress and strain obtained from the finite element simulation into the ductile fracture criterion. Material constants in the criterion are obtained from the fracture strains measured in the biaxial stretching tests. Calculations are carried out for various strain paths from balanced biaxial stretching to uniaxial tension of aluminium alloy sheets, and compared with the experimental results. The predicted limit strains are in good agreement with the measured ones not only just at the fracture site but also at outside of the fracture site. It is demonstrated that the forming limit diagrams are successfully predicted by the present approach.  相似文献   

18.
In the gas forming process, the work piece is formed by applying gas pressure. However, the gas pressure and the accompanying gas temperature can result in crack initiation and unstable crack growth. Thus, it is vital to determine the critical values of applied gas pressure and temperature to avoid crack and fracture failure. We studied the mechanism of fracture using an experimental approach and finite element simulations of a perfect aluminum sheet containing no inclusions and voids. The definition of crack was based on ductile damage mechanics. For inspection of initiation of crack and rupture in gas-metal forming, the ABAQUS/EXPLICIT simulation was used. In gas forming, the applied load is the pressure applied rather than the punching force. The results obtained from both the experimental approach and finite element simulations were compared. The effects of various parameters, such as temperature and gas pressure value on crack initiation, were taken into account.  相似文献   

19.
To investigate ductile damage in parts made by cold sheet‐bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. Microsc. Res. Tech. 79:321–327, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles. However, sheet metal forming process not only produces desirable changes in material properties but also causes material damage that may adversely influence the service performance of the material formed. Thus, an investigation is conducted to experimentally quantify such influence for a commonly used steel (the 22MnB5 steel) based on the hot and cold forming processes. For each process, a number of samples are used to conduct a uniaxial tensile test to simulate the forming process. After that, some of the samples are trimmed into a standard shape and then uniaxially extended until fracture to simulate the service stage. Finally, a microstructure test is conducted to analyze the microdefects of the remaining samples. Based on the results of the first two tests, the effect of material damage on the service performance of 22MnB5 steel is analyzed. It is found that the material damages of both the hot and cold forming processes cause reductions in the service performance, such as the failure strain, the ultimate stress, the capacity of energy absorption and the ratio of residual strain. The reductions are generally lower and non-linear in the former process but higher and linear in the latter process. Additionally, it is found from the microstructure analysis that the difference in the reductions of the service performance of 22MnB5 by the two forming processes is driven by the difference in the micro damage mechanisms of the two processes. The findings of this research provide a useful reference in terms of the selection of sheet metal forming processes and the determination of forming parameters for 22MnB5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号