首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
通过金相、扫描电镜观察、能谱分析和力学性能检测,研究了稀土Ce对1Cr18Mn8Ni5N不锈钢力学性能的影响。在相同的热处理工艺条件下,分别加入不同含量的稀土Ce,与不添加稀土Ce的1Cr18Mn8Ni5N不锈钢的力学性能进行比较。研究结果表明:稀土Ce加入量在适当的范围内可显著提高不锈钢的强度、塑性、冲击韧性。当稀土Ce的质量分数为0.016%时,1Cr18Mn8Ni5N不锈钢可获得最佳的综合力学性能。  相似文献   

2.
试验用1Cr17Mn6Ni5N钢(/%:0.09~0.11C,0.19~0.29Si,7.33~7.42Mn,0.011~0.015P,0.004~0.007S,16.87~17.24Cr,,5.06~5.19Ni,0.21~0.40N)由10kg真空感应炉熔炼,通过氮气气氛加氮化铬进行N合金化。通过Gleeble-1500D热模拟试验机将实验钢在真空下1150~1 000℃,以应变速率10-2s-1和1 s-1进行压缩60%试验。结果表明,在高温下,以低应变速率压缩时钢的动态再结晶是主要的软化机制;以高应变速率压缩时钢的动态回复是主要的软化机制;与0.21%N和0.29%N试验钢相比,含0.40%N的试验钢具有较高的峰值应力,根据Zener-Hollomon参数的计算得出0.40%N的试验钢再结晶激活能最高,在高温下不易发生动态再结晶。  相似文献   

3.
 采用热压缩和热拉伸试验方法,对节镍型双相不锈钢00Cr21Mn5Ni1N的高温变形抗力、高温塑性及高温变形时奥氏体相的数量进行了研究。结果表明,00Cr21Mn5Ni1N双相不锈钢在950~1 200 ℃之间变形时,具有良好的热加工性能,钢中奥氏体相量可以控制在适合热加工的范围。  相似文献   

4.
5.
00Cr21Ni2Mn5N双相不锈钢的高温变形   总被引:1,自引:0,他引:1  
采用Gleeble-3800热/力模拟实验等方法研究了00Cr21Ni2Mn5N奥氏体-铁索体双相不锈钢(LDSS)在温度为850~1150℃、应变速率为5~50s-1,压下量60%的热变形行为及组织变化。结果表明,00Cr21Ni2Mn5N双相不锈钢的流变应力随温度的增加而降低,随应变速率的增加而增加,该钢的软化机制与Zener-Hollomon(Z)参数有关,00Cr21Ni2MnSN双相钢的表观应力指数为4.82,热变形表观激活能(Q)为219 kJ/mol  相似文献   

6.
化学成分和固溶温度对1Cr17Mn9Ni4N不锈钢组织和性能的影响   总被引:3,自引:1,他引:2  
为提高1Crl7Mn9Ni4N钢固溶处理后的力学性能(特别是钢的强度),研究了化学成分及固溶处理温度对其组织和性能的影响。结果表明,1000—1125℃固溶处理后,该钢的组织为单相奥氏体。在标准成分范围内,随着镍、锰含量的增加,该钢的强度降低,塑性有所改善。氮明显提高该钢的强度。根据试验结果,每增加0.01%的氮钢的室温强度可提高大约5MPa,且塑性基本上不受影响。当合金成分(质量分数,%)控制在C0.08—0.12、Crl6.5—17.5、Ni3.5—4.2、Mn8.0—9.0、N0.22—0.28时,1Crl7Mn9Ni4N钢经1050—1100℃固溶处理后强度较高、塑性好,室温强度σ0.2和σb可分别达到400MPa和800MPa。  相似文献   

7.
采用Gleeble 1500热模拟试验机研究了0.008 7%~0.150 0%N对热轧0Cr18Ni9N钢(%:0.044~0.049C、0.41~0.51Si、1.46~1.52Mn、17.92~18.15Cr、9.09~9.24Ni、0.01~0.03Ti)以应变速率5×10~(-3)s~(-1)和1s~(-1)在800~1300℃的拉伸和压缩性能的影响,并分析了N含量对该钢动态再结晶性能的影响。结果表明,随着N含量的增加,该钢断面收缩率显著下降,同时其最佳热塑性的温度区间提高;当N含量低于0.0500%时,最佳热塑性区间为950~1100℃;而当N含量为0.0800%~0.1500%时,则为1150~1250℃。  相似文献   

8.
2.5 mm热轧06Cr18Ni5Mn7Cu3N奥氏体不锈钢带的生产流程为70 t EAF-70 t底吹GOR转炉-LF-180 mm ×1240 mm板坯CC-热轧工艺。酸洗后2.5 mm热轧带距边部约30 mm处出现宽度≤20 mm,深≤0.06 mm的脱皮缺陷。分析表明,由于在热轧加热过程中加热温度过高(1200~1260℃),以及加热时间过长(超过210 min)使得富铜相在晶界处大量析出致使在热轧过程形成脱皮缺陷。通过将加热温度调整为1200~1240℃,加热时间为150~210 min后,产生脱皮缺陷的带材由7%降至0.5%以下,产品质量得到了显著的提升。  相似文献   

9.
1Cr18Ni9Ti不锈钢晶间腐蚀试验研究   总被引:4,自引:0,他引:4  
陈睿  刘静  庞于思 《河南冶金》2006,14(4):14-17
通过对1Cr18Ni9Ti不锈钢无缝钢管晶间腐蚀试验的研究,从多个方面分析造成试样材质不合格的原因,进而总结出在冶炼18-8型不锈钢时化学成分控制的要点.  相似文献   

10.
采用Gleeble 1500热模拟试验机研究了0.008 7%~0.1500%N对热轧0Cr18Ni9N钢(%:0.044~0.049C、0.41~0.51 si、1.46~1.52Mn、17.92~18.15Cr、9.09~9.24Ni、0.01~0.03Ti)以应变速率5×10-3s-1和18-1在800~1 300℃的拉伸和压缩性能的影响,并分析了N含量对该钢动态再结晶性能的影响.结果表明,随着N含量的增加,该钢断面收缩率显著下降,同时其最佳热塑性的温度区间提高;当N含量低于0.0500%时,最佳热塑性区间为950~1100℃;而当N含量为0.0800%~0.150 0%时,则为1150~1 250℃.  相似文献   

11.
长期时效对GH4199合金组织和性能的影响   总被引:1,自引:0,他引:1  
 采用金相和电镜微观组织观察、室温和高温拉伸试验、物理化学相分析等综合试验方法,对经600、700、800、900 ℃和100、200、500、1 000 h长期时效处理的GH4199合金进行测试和研究。结果表明,GH4199合金经长期时效后,其室温和高温力学性能仍保持在较高水平;合金的组织稳定性良好,析出相主要为γ′相和碳化物。据相分析结果可知,在700~900 ℃时效1 000 h左右,合金组织中存在极微量的脆性(TCP)相——μ相和σ相,它们对合金的力学性能基本无影响,组织中虽然存在微量TCP相,但合金的室温和高温塑性不发生“脆化”。  相似文献   

12.
0Cr21Ni6Mn9N奥氏体不锈钢的应变强化行为   总被引:2,自引:0,他引:2  
研究了不同氮含量的0Cr21Ni6Mn9N奥氏体不锈钢的塑性流变行为。结果表明,其形变强化特性可用Ludwigson模型来表示。钢在不同的应变下表现出不同的塑性流变行为,存在一个瞬变应变。当应变量低于它时,流变行为与Ludwik方程存在一个正偏差;而应变量高于它时,则符合Ludwik模型。造成这一差异的主要原因是位错滑移模式发生了改变,低于瞬变应变时为单系滑移,高于瞬变应变时为多系滑移。氮对位错滑移模式的影响主要表现为对瞬变应变的影响。随氮含量的增加,瞬变应变被推向更高的水平,这意味着氮原子使位错在更大的应变下才产生多系滑移和交滑移。  相似文献   

13.
The preparation of nondendritic semisolid slurry for stainless steel 1Crl8Ni9Ti was studied. The experiments show that when stirred for 2--3 min under the test condition, the semisolid slurry with solid of about 50% and spherical primary austenite in size of 100--200μm can be obtained, and besides the slurry is easy to flow out through the bottom hole of thestirring chamber. More homogeneous temperature fields and solute fields of stainless steel 1Crl8Ni9Ti melt appear because of the electromagnetic stirring, which restrains the formation of large primary austenitic dendrites and creates a base to form spherical crystals of primary austenite. The stronger temperature fluctuation in the melt containing many stirring-initiated rosette primary austenitic grains, together with the simultaneous remelting of the secondary arm roots primarily account for the deposition of the spherical primary austenitic grains.  相似文献   

14.
节镍型奥氏体不锈钢1Cr17Mn9Ni4N的组织和力学性能   总被引:5,自引:0,他引:5  
从热处理工艺对室温拉伸性能的影响和试验温度对拉伸性能的影响两个方面分析了1Cr17Mn9Ni4N钢组织和力学性能之间的关系。试验结果表明:随着固溶处理温度(950~1075℃)的提高,强度降低、塑性提高;水冷或空冷对力学性能的影响不大;材料的锻比对力学性能具有一定的影响;与同类钢相比,1Cr17Mn9Ni4N钢具有优异的室温和低温力学性能。该钢在低温变形时的TRIP效应是低温综合力学性能良好的根本原因。  相似文献   

15.
工艺参数对5Cr21Mn9Ni4N钢塑性的影响   总被引:1,自引:1,他引:0  
张强 《特殊钢》1995,16(1):34-36
本文讨论了热变形和冷变形工艺参数对5Cr21Mn9Ni4N钢塑性的影响,提出大断面钢坯锻轧温度为1100℃,小断面钢坯开轧温度为1180℃,并用冷轧代替冷拔成材的工艺流程。  相似文献   

16.
Microstructure of Steel 5Cr21Mn9Ni4N Alloyed by Rare Earth   总被引:3,自引:0,他引:3  
The microstructure, composition and shape of precipitated phase under as-cast and finished product state of 5Cr21Mn9Ni4N steel with different rare earth (RE) amount were studied. Mechanical properties of 5Cr21Mn9Ni4N steels withont RE addition and with RE added by 0. 2% in mass percent were tested respectively. The results indicate that the solid solution amount of RE is about 10^-6 -10^-5 order of magnitude in 5Cr21Mn9Ni4N steel. Dendrite of as-cast condition is refined obviously and dimension of interstitial phase is shortened when RE is added by 0.10%-0.20%. But the microstructure will be coarser if surplus RE is added. Precipitated phase under finished product state distributes evenly in nearly same size with RE added by 0. 2% which leads to a largely improved high temperature mechanical property.  相似文献   

17.
扩渗稀土对1Cr18Ni9钢耐腐蚀性能的影响   总被引:3,自引:3,他引:0  
王锐  许越  吕祖舜  刘红兵 《稀土》2001,22(4):75-77
研究了通过化学气相扩渗稀土方法提高1Cr18Ni9钢表面耐腐蚀性能的作用.结果表明,经过65%硝酸腐蚀三个周期试验,扩渗稀土试样质量损失腐蚀速率明显减小;阳极极化曲线的测定结果证明了扩渗稀土后的试样临界钝化电流密度和稳定钝态下溶解电流密度降低,钝态电位区间加宽.经扩渗稀土处理的1Cr18Ni9钢晶界和晶内元素铬含量趋于一致,不存在贫铬区,耐腐蚀性能显著提高.  相似文献   

18.
1Cr18Ni9Ti不锈钢的晶间腐蚀性能与Ti,C比关系   总被引:1,自引:0,他引:1  
采用EPR电化学试验、草酸侵蚀试验及硫酸—硫酸铜腐蚀试验研究了1Cr18Ni9Ti不锈钢的抗敏化态晶间腐蚀性能与钢中Ti,C比的关系,以确定此钢适宜的钛含量。所用试样均为固溶处理(1030℃×10min、水冷)后经敏化处理(650℃×2h,空冷)。试验结果表明,为防止在试验条件下产生敏化态晶间腐蚀,1Cr18Ni9Ti不锈钢最低钛含量需满足Ti/C≥5.5或Ti/(C-0.02)≥8。根据试验结果提出应对钢中钛含量上限值合理控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号