首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
某钢铁公司采用薄板坯连铸连轧技术生产取向硅钢,通过低温加热一次冷轧法生产高磁感取向硅钢产品,炼钢及热轧采用CSP生产试制取向硅钢。生产中对转炉冶炼、LF精炼、RH真空处理、板坯连铸保护浇注、热轧等工序进行工艺实践优化,采用全铁水冶炼,出钢预脱氧后加入硅铁、锡锭进行合金化,LF精炼使用精炼调渣剂确保顶渣埋弧效果,RH真空处理采用轻处理模式进行真空循环,浇注过程采用全程保护浇注等,合理实现了对钢水及成品中N等成分的控制,铸坯全氧质量分数控制在0.000 7%~0.002 4%,氮的质量分数为0.007 1%~0.008 1%,使取向硅钢满足下一步冷轧工艺的需要。  相似文献   

2.
采用120t BOF冶炼→ LF精炼→ RH真空处理→CCM连铸(240 mm×240mm)→Φ55mm和Φ60 mm棒材轧制工艺流程生产汽车轮毂用S55C中碳轴承钢(0.54%~0.56%C).转炉高拉碳,终点[C]≥0.10%,并配备下渣红外检测系统;LF精炼渣碱度控制在4.0~6.5;RH精炼在≤66.7 Pa的...  相似文献   

3.
介绍了邢台钢铁有限责任公司炼钢厂方坯连铸超低碳钢的操作实践,对不同的生产工艺进行对比后,优化选择了"转炉→LF精炼→RH真空处理→方坯连铸"工艺路线。研究发现:无顶渣改质时(FeO)、(MnO)含量高,且波动较大(w(FeO)=9%~14%、w(MnO)=1%~3%),易造成水口絮流;采用三步顶渣改质工艺(转炉、LF、RH工序钢包顶渣改质),可将顶渣w(FeO+MnO)控制在3%左右,为钢液钙处理创造有利条件,避免水口絮流,实现多炉连浇,且成品平均w(C)=0.008%("转炉→RH→LF→方坯连铸"工艺成品平均w(C)=0.010 2%)。  相似文献   

4.
采取转炉高拉碳出钢、双渣法冶炼、LF高碱度渣精炼、RH真空脱气、连铸加强保护浇铸及控制钢液过热度等措施,有效控制GCr15轴承钢中的氧、氮、硫、磷、钛等元素及夹杂物含量。试验表明:提高转炉出钢碳质量分数,有利于降低钢中的氧质量分数;随着炉渣碱度的升高,钢液中ω(O)大幅降低;GCr15轴承钢经过RH真空处理,钢液中的ω(TO)从0.002 8%下降到0.000 9%;双渣法冶炼可以提高转炉冶炼前期的脱磷率;LF精炼和连铸过程增氮,RH过程降氮;LF精炼过程是控制ω(Ti)的关键;夹杂物和碳化物都得到有效控制。  相似文献   

5.
分析了本钢采用转炉→炉外精炼(LF+RH)→矩形坯连铸工艺流程生产齿轮钢控制钢中T[O]含量的工艺流程,并提出转炉复吹、精炼LF白渣操作、RH真空循环及钙处理是降低钢中T[O]含量的关键。  相似文献   

6.
《炼钢》2017,(2)
为了合理选择低碳铝镇静钢的二次精炼工艺,满足现代钢铁厂高效、洁净、低成本以及大规模稳定生产的需求,对LF精炼+钙处理、CAS精炼、LF精炼不钙处理、RH普通处理、RH轻处理等5种不同二次精炼工艺进行了对比分析。结果表明,RH轻处理工艺更适合生产碳含量窄成分控制的低碳铝镇静钢,工序成本最低33.17元/t;RH普通处理工艺钢水纯净度最好,中包钢水平均w(T.O)=16×10~(-6),精炼结束夹杂物总量11.2个/mm~2。应优先采用RH轻处理工艺,其次采用RH普通处理或CAS精炼工艺。LF可不采用钙处理工艺,对于有脱硫任务和连铸水口堵塞严重的钢厂采用LF精炼+钙处理更具有优势。  相似文献   

7.
介绍了芜湖新兴铸管有限责任公司炼钢厂采用RH-LF精炼法生产低碳钢QD08的工艺实践。通过对转炉出站钢水初始条件,RH真空脱碳原理和过程控制,后续LF冶炼3个方面的分析研究,结果表明,初始钢水控制条件为[C] 0.04%~0.10%,[0]>300×10-6,转炉终点出钢温度T≥1 650℃。随真空处理时间延长,真空度降低,真空室内PCO减少,碳氧浓度积呈降低的趋势,真空室内因发生碳氧反应进行脱碳,RH真空脱碳满足热力学条件;脱碳速率的变化规律为先增大后减小,脱碳速率有一定的规律;RH真空处理后的钢水需在LF完成脱硫、升温、合金化等操作,并且需保证终渣量20~23 kg/t,终渣(FeO)+(MnO)<1.2%,碱度R≥3.5等工艺条件。  相似文献   

8.
杜和平  杨志才 《特殊钢》2015,36(1):25-27
兴澄特钢生产碳素结构钢和船板用钢的生产流程为150 t BOF-LF-RH-200~250 mm板CC工艺。统计分析了精炼过程造渣埋弧操作、送电制度、LF加热时间、钢包底吹氩等工艺因素对钢水增氮的影响。通过控制除尘吸风管道阀门开启度,保持LF内微正压操作,精炼前采用较高供电功率,后期用低供电功率,精炼前、中、后期分别采用氩气流量200,400~500,200~300 L/min,以及控制LF渣量1.2%等措施可使LF精炼过程的增氮量≤5×10-6,不经过RH真空处理,可控制板坯氮含量≤50×10-6。  相似文献   

9.
介绍了小方坯连铸超低碳钢水的转炉冶炼、LF精炼和RH真空处理的生产工艺,针对钢水可浇性差和钢中Si含量偏高问题进行工艺技术优化。试验研究表明,降低LF脱硫任务,采用少渣精炼,造渣料石灰加入量控制在6. 5~7. 5 kg/t有利于钢包顶渣改质和控制钢中[Si]含量;RH根据经验公式确定吹氧量,既能满足强制脱碳的需要又可防止钢水过氧化,破真空后用高铝渣对顶渣进行改质,控制渣中TFe质量分数小于1. 0%,并对钢水Ca处理,有效提高了钢水的可浇性,顺利实现超低碳钢小方坯连铸。  相似文献   

10.
分析了齿轮钢中氧含量控制的关键技术:精炼渣SiO2含量,(CaO)/(Al2O3),(FeO+MnO),RH,氩气搅拌,连铸工艺。结合攀枝花新钢钒股份有限公司炼钢厂的工艺条件,通过控制转炉终点[C]≥0.10%,钢包渣厚50~80 mm,出钢过程加高碱度精炼渣,LF白渣精炼[渣中T.Fe-0.43%,(MnO+FeO)-0.93%,SiO2-5%,平均(CaO)/(Al2O3)-1.9],20 min RH处理,连铸保护浇铸等工艺措施,并在炉后平台,LF精炼和钙处理过程采用合适的吹氩模式,使20CrMoH齿轮钢铸坯总氧含量≤15×10-6,平均总氧含量为11.8×10-6。  相似文献   

11.
通过对首钢京唐公司300t炼钢转炉→LF精炼→RH精炼→CC连铸各工序氮质量分数控制的研究,探讨影响钢中氮质量分数的因素和控制措施,结合生产实践,提出强化转炉冶炼操作、LF埋弧造渣、保证RH真空度和连铸全保护浇铸等工艺优化措施,尤其是控制LF精炼增氮和发挥RH精炼脱氮功能,改进后LF精炼增氮量小于0.001 0%;RH精炼可将氮质量分数脱至0.0030%,连铸增氮量平均为0.000 14%,首钢京唐管线钢成品氮质量分数平均为0.0031%,达到先进企业的水平。  相似文献   

12.
王章印  姜敏  王新华 《钢铁》2022,57(2):63-72
冶炼Q345D钢时由于夹杂物导致的探伤不合格情况时有发生,为了进一步去除和控制钢中非金属夹杂物,通过工业试验研究了"LF精炼→RH真空精炼→钙处理→软吹→连铸"工艺中的夹杂物生成及演变规律,并通过热力学计算优化钙处理工艺.结果 表明,转炉炉后及LF进站时采用铝强脱氧,夹杂物主要为Al2O3,LF精炼过程采用高碱度、强还...  相似文献   

13.
为了研究120 t BOF-LF-RH-160 mm×160 mm坯CC工艺生产的铝脱氧20钢(/%:0.13~0.23C,0.17~0.37Si,0.35~0.65Mn,≤0.035P,≤0.035S,0.020~0.050Al)中非金属夹杂物的控制技术,对LF精炼过程中脱氧剂加入时机进行调整,并对精炼过程中非金属夹杂物类型与夹杂物数量进行分析。结果表明,转炉出钢后采用铝块脱氧,LF精炼进站非金属夹杂物主要为Al2O3,精炼结束前部分夹杂物由Al2O3转变为Al2O3·CaO,RH结束后非金属夹杂物密度3~4个/mm2,铸坯氧含量(7.48~8.18)×10-6;而转炉出钢后采用硅锰进行脱氧,精炼结束前采用铝线,精炼过程中夹杂物主要为MnO·SiO2,CaO含量小于5%,精炼结束非金属夹杂物控制为Al2O3,RH真空处理后,非金属夹杂物密度小于1.5个/mm2,铸坯氧含量(4.94~5.53)×10-6。因此,针对采用“BOF-LFRH-CC”工艺流程生产的含铝钢,提出精炼结束前将非金属夹杂物控制为Al2O3,同时运用RH真空高效去除夹杂物,以提高钢水的洁净度。  相似文献   

14.
RH真空精炼过程的计算机自动控制技术   总被引:1,自引:0,他引:1  
RH真空精炼是大批量生产优质纯净钢的重要手段.在RH处理过程中,计算机自动控制技术对于优化生产工艺,稳定钢水质量,提高生产效率,降低消耗具有重要意义.对RH精炼过程的计算机自动控制系统的构成、功能、效果及发展进行了综合评述.  相似文献   

15.
介绍了管线钢中氮的危害,结合管线钢化学成分和生产工艺,分析氮的来源、溶解和扩散机理,基于转炉冶炼、LF炉精炼、RH炉精炼、连铸等生产工艺特性,对不同工序钢水中氮的数据进行采集和分析,系统研究提高转炉吹炼命中率、改善造渣制度、强化出钢管理、全程底吹Ar控制,LF微正压操作,RH真空处理,连铸保护浇注等措施对降氮和控氮的影响,指出连铸坯氮含量偏高的主要原因。为管线钢冶炼的降氮和控氮,强化重点工艺环节的控制,优化改进控制工艺,提供了科学依据,形成了一套全工序控制钢水氮的措施,确保高级管线钢中氮质量分数控制在0.0045%以下。  相似文献   

16.
介绍了莱钢在现有工艺设备的基础上,针对LF—RH双联工艺存在的主要问题进行了研究与优化。对LF炉工艺功能进行简化与优化,使其具备快速造白渣、脱氧功能,有效去除渣中氧含量,确保渣中(FeO+MnO)小于1.5%;运用温度控制模型,实现温度控制精准化,有效降低了RH吹氧率,缩短了RH冶炼周期;RH采用真空钙处理技术、增上软吹工艺以及优化环流模式,提高了钢水纯净度,成功解决了连铸机套眼问题;优化RH脱氢工艺。稳定钢中氢含量,同时有效缩短RH处理周期,实现了RH冶炼高效化;形成了一套完整的LF—RH工艺控制技术.取得良好的冶金效果。  相似文献   

17.
王康豪  姜敏  李凯轮  王新华 《钢铁》2022,57(10):64-72
 为研究GCr15轴承钢中夹杂物的演变规律,对某钢厂BOF-LF-RH-CC工艺流程生产的GCr15轴承钢进行了全流程取样,并利用ASPEX扫描电镜和热力学计算对各工序钢中夹杂物的演变进行了系统的分析。研究表明,在LF精炼初期,钢中夹杂物主要为高Al2O3(w(Al2O3)=84%)的MgO-Al2O3和CaO-MgO-Al2O3夹杂物;LF精炼结束时,MgO-Al2O3和CaO-MgO-Al2O3夹杂物的数量所占比例分别为74%和26%,此时钢液中夹杂物尺寸主要为1~6 μm,数量所占比例为87%。LF-RH精炼期间,夹杂物总数量由LF精炼结束时的198 个/(20 mm2)降低至RH破空后的103 个/(20 mm2),降幅为48%,其中MgO-Al2O3夹杂物主要在LF精炼期间生成,然后在RH精炼时基本被去除,具体表现为,其数量由LF进站时的88 个/(20 mm2)增加至LF出站时的139 个/(20 mm2),在RH软吹结束时降低为4 个/(20 mm2);CaO-MgO-Al2O3夹杂物主要在RH精炼期间生成,其数量由LF出站时的49个/(20 mm2)增加至RH软吹结束时的108 个/(20 mm2),这表明RH真空精炼对夹杂物去除效果较好。热力学计算结果表明,二次精炼过程中钢中Als、Mg含量处于MgO-Al2O3夹杂物优势区内,这表明MgO-Al2O3夹杂物更易生成;当钢中w([Mg])为0.000 3%时,w([Ca])大于0.000 25%,满足MgO-Al2O3夹杂物转变为CaO-MgO-Al2O3夹杂物的热力学条件,而且当w([Als])为0.022%时,w([Ca])控制为0.000 25%~0.007 00%时更有利于生成液态化的钙铝酸盐。试验过程钢中w([Ca])约为0.000 1%~0.000 4%,因此夹杂物更多地转变为CaO-MgO-Al2O3夹杂物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号