首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of D ‐amino acid oxidase contained in permeabilized cells of the yeast Trigonopsis variabilis by α‐keto acids (pyruvic acid, phenylpyruvic acid and 4‐methylthio‐2‐oxobutanoic acid), products of the transformation of the corresponding D ‐amino acids, was studied. In all cases, inhibition was of the mixed type and significant differences with respect to the inhibition shown by the enzyme from other sources such as pig kidney or the yeast Rhodotorula gracilis were observed. A study was also made of the thermal deactivation of the enzyme contained in permeabilized cells of T variabilis in the temperature range 30–50 °C in sodium phosphate and Tris hydroxylmethyl aminomethane + CaCl2 buffers. A deactivation mechanism with two steps in series is proposed to account for the variation in activity with time. The results suggest that the enzyme shows greater stability in phosphate buffer, with half‐lives between 7.6 days at 30 °C and 8.6 h at 50 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
[Fe]‐Hydrogenase (Hmd) catalyzes reversible hydride transfer from H2. It harbors an iron‐guanylylpyridinol as a cofactor with an FeII that is ligated to one thiolate, two COs, one acyl‐C, one pyridinol‐N, and solvent. Here, we report that CuI and H2O2 inactivate Hmd (half‐maximal rates at 1 μM CuI and 20 μM H2O2) and that FeII inhibits the enzyme with very high affinity (Ki=40 nM ). Infrared and EPR studies together with competitive inhibition studies with isocyanide indicated that CuI exerts its inhibitory effect most probably by binding to the active site iron‐thiolate ligand. Using the same methods, it was found that H2O2 binds to the active‐site iron at the solvent‐binding site and oxidizes FeII to FeIII. Also it was shown that FeII reversibly binds away from the active site iron, with binding being competitive to the organic hydride acceptor; this inhibition is specific for FeII and is reminiscent of that for the [FeFe]‐hydrogenase second iron, which specifically interacts with H2.  相似文献   

3.
A series of N‐bromoacetylglycosylamines and bromoketone C‐glycosides were synthesised from complex xyloglucan oligosaccharide (XyGO) scaffolds as specific active‐site affinity labels for endo‐xyloglucanases. Compounds based on XXXG (Xyl3Glc4) and XLLG (Xyl3Glc4Gal2) oligosaccharides exhibited strikingly higher affinities and higher rates of irreversible inhibition than known cellobiosyl and new lactosyl disaccharide congeners when tested with endo‐xyloglucanases from two distinct glycoside hydrolase (GH) families. Intact‐protein mass spectrometry indicated that inactivation with XyGO derivatives generally resulted in a 1:1 labelling stoichiometry. Together, these results indicate that XyGO‐based affinity reagents have significant potential as inhibitors and proteomic reagents for the identification and analysis of diverse xyloglucan‐active enzymes in nature, to facilitate industrial enzyme applications.  相似文献   

4.
Biotransformations in organic chemistry frequently suffer from limitations caused by low water‐solubility of substrates and product inhibition. Both, usually are addressed by the addition of organic cosolvents, which often accompanies at the expense of enzyme stability. A common method for measuring enzyme stability is to determine the melting temperature (Tm) of the enzyme. However, current methods are limited to the application of purified enzymes. Herein, for the first time, an easy and fast (<1 h) high‐throughput feasible method to determine enzyme stabilities directly from crude extracts is reported. In pure buffer, the Tm value measured in the crude extract was identical to that obtained for the purified enzyme. Through the addition of different organic compounds, the Tm values in the crude extract differed by up to 2.4 °C from that of the purified enzymes due to the presence of the host‐cell proteins. Thus, the measurement of enzyme stabilities in crude extracts appears to represent conditions in whole‐cell catalysts even better. The applied nano differential scanning fluorimetry technology is further proven to be suitable for whole‐cell catalysts with two overexpressed enzymes; thus representing a tool for the rapid screening of natural and mutant enzyme libraries in terms of process stability for challenging biotransformations.  相似文献   

5.
Levoglucosan kinase (LGK) catalyzes the simultaneous hydrolysis and phosphorylation of levoglucosan (1,6‐anhydro‐β‐d ‐glucopyranose) in the presence of Mg2+–ATP. For the Lipomyces starkeyi LGK, we show here with real‐time in situ NMR spectroscopy at 10 °C and pH 7.0 that the enzymatic reaction proceeds with inversion of anomeric stereochemistry, resulting in the formation of α‐d ‐glucose‐6‐phosphate in a manner reminiscent of an inverting β‐glycoside hydrolase. Kinetic characterization revealed the Mg2+ concentration for optimum activity (20–50 mm ), the apparent binding of levoglucosan (Km=180 mm ) and ATP (Km=1.0 mm ), as well as the inhibition by ADP (Ki=0.45 mm ) and d ‐glucose‐6‐phosphate (IC50=56 mm ). The enzyme was highly specific for levoglucosan and exhibited weak ATPase activity in the absence of substrate. The equilibrium conversion of levoglucosan and ATP lay far on the product side, and no enzymatic back reaction from d ‐glucose‐6‐phosphate and ADP was observed under a broad range of conditions. 6‐Phospho‐α‐d ‐glucopyranosyl fluoride and 6‐phospho‐1,5‐anhydro‐2‐deoxy‐d ‐arabino‐hex‐1‐enitol (6‐phospho‐d ‐glucal) were synthesized as probes for the enzymatic mechanism but proved inactive with the enzyme in the presence of ADP. The pyranose ring flip 4C11C4 required for 1,6‐anhydro‐product synthesis from d ‐glucose‐6‐phosphate probably presents a major thermodynamic restriction to the back reaction of the enzyme.  相似文献   

6.
The novel fatty acids (2R,5Z,9Z)‐2‐methoxy‐25‐methyl‐5,9‐hexacosadienoic acid ( 1a ) and (2R,5Z,9Z)‐2‐methoxy‐24‐methyl‐5,9‐hexacosadienoic acid ( 1b ) were isolated in 80 % purity from the Caribbean sponge Asteropus niger by chloroform/methanol extraction followed by solvent partitioning and silica gel column chromatography. The compounds were characterized by utilizing a combination of gas chromatography‐mass spectrometry, nuclear magnetic resonance, and circular dichroism. Acids 1a and 1b were not detected in the phospholipids (PtdCho and PtdIns) of the sponge, but rather as free FA and possibly in glycosylceramides. The mixtures of 1a and 1b displayed cytotoxicity towards THP‐1 and HepG2 cells with EC50's between 41 and 35 μg/mL. Apoptosis was not the preferred mode of cell death induced by 1a – 1b in the THP‐1 cells. This implies other types of cytotoxicity mechanisms, such as membrane disruption and/or the inhibition (EC50 = 1.8 μg/mL) of the human topoisomerase IB enzyme (hTopIB), with a mechanism of inhibition different from the one displayed by camptothecin (CPT). In a separate experiment, the mixture of 1a and 1b also displayed cytotoxicity towards ex vivo mouse splenocytes infected with Leishmania infantum amastigotes (IC50 = 0.17 mg/mL) and free living promastigotes (IC50 = 0.34 mg/mL). It was also found that the FA were inhibitory of the Leishmania topoisomerase IB (LTopIB) with an EC50 = 5.1 μg/mL. Taken together, 1a and 1b represent a new class of FA with potential as TopIB inhibitors that preferentially inhibit hTopIB over LTopIB.  相似文献   

7.
A hybrid approach was applied for the design of an inhibitor of trypsin‐like serine proteases. Compound 16 [(R,R)‐ and (R,S)‐diphenyl (4‐(1‐(4‐amidinobenzylamino)‐1‐oxo‐3‐phenylpropan‐2‐ylcarbamoyl)phenylamino)(4‐amidinophenyl)methylphosphonate hydrochloride], prepared in a convergent synthetic procedure, possesses a phosphonate warhead prone to react with the active site serine residue in a covalent, irreversible manner. Each of the two benzamidine moieties of 16 can potentially be accommodated in the S1 pocket of the target enzyme, but only the benzamidine close to the phosphonate group would then promote an irreversible interaction. The Janus‐faced inhibitor 16 was evaluated against several serine proteases and caused a pronounced inactivation of human thrombin with a second‐order rate constant (kinac/Ki) of 59 500 M ?1 s?1. With human matriptase, 16 showed preference for a reversible mode of inhibition (IC50=2.6 μM ) as indicated by linear progress curves and enzyme reactivation.  相似文献   

8.
Translocase MraY is the site of action of lysis protein E from bacteriophage ?X174. Previous genetic studies have shown that mutation F288L in transmembrane helix 9 of E. coli MraY confers resistance to protein E. Construction of a helical wheel model for transmembrane helix 9 of MraY and the transmembrane domain of protein E enabled the identification of an Arg‐Trp‐x‐x‐Trp (RWxxW) motif in protein E that might interact with Phe288 of MraY and the neighbouring Glu287. This motif is also found in a number of cationic antimicrobial peptide sequences. Synthetic dipeptides and pentapeptides based on the RWxxW consensus sequence showed inhibition of particulate E. coli MraY activity (IC50 200–600 μM ), and demonstrated antimicrobial activity against E. coli (MIC 31–125 μg mL?1). Cationic antimicrobial peptides at a concentration of 100 μg mL?1 containing Arg‐Trp sequences also showed 30–60 % inhibition of E. coli MraY activity. Assay of the synthetic peptide inhibitors against recombinant MraY enzymes from Bacillus subtilis, Pseudomonas aeruginosa, and Micrococcus flavus (all of which lack Phe288) showed reduced levels of enzyme inhibition, and assay against recombinant E. coli MraY F288L and an E287A mutant demonstrated either reduced or no detectable enzyme inhibition, thus indicating that these peptides interact at this site. The MIC of Arg‐Trp‐octyl ester against E. coli was increased eightfold by overexpression of mraY, and was further increased by overexpression of the mraY mutant F288L, also consistent with inhibition at the RWxxW site. As this site is on the exterior face of the cytoplasmic membrane, it constitutes a potential new site for antimicrobial action, and provides a new cellular target for cationic antimicrobial peptides.  相似文献   

9.
Trypanothione reductase (TryR) is a key validated enzyme in the trypanothione‐based redox metabolism of pathogenic trypanosomes and leishmania parasites. This system is absent in humans, being replaced with glutathione and glutathione reductase, and as such offers a target for selective inhibition. As part of a program to discover antiparasitic drugs, the LOPAC1280 library of 1266 compounds was screened against TryR and the top hits evaluated against glutathione reductase and T. brucei parasites. The top hits included a number of known tricyclic neuroleptic drugs along with other new scaffolds for TryR. Three novel druglike hits were identified and SAR studies on one of these using information from the tricyclic neuroleptic agents led to the discovery of a competitive inhibitor (Ki=330 nM ) with an improved potency against T. brucei (EC50=775 nM ).  相似文献   

10.
Natural and synthetic unsaturated glucuronides were tested as substrates for Clostridium perfringens unsaturated glucuronyl hydrolase to probe its mechanism and to guide inhibitor design. Of the natural substrates, a chondroitin disaccharide substrate with sulfation of the primary alcohol on carbon 6 of its N‐acetylgalactosamine moiety was found to have the highest turnover number of any substrate reported for an unsaturated glucuronyl hydrolase, with kcat=112 s?1. Synthetic aryl glycoside substrates with electron‐withdrawing aglycone substituents were cleaved more slowly than those with electron‐donating substituents. Similarly, an unsaturated glucuronyl fluoride was found to be a particularly poor substrate, with kcat/Km=44 nM ?1 s?1—a very unusual result for a glycoside‐cleaving enzyme. These results are consistent with a transition state with positive charge at carbon 5 and the endocyclic oxygen, as anticipated in the hydration mechanism proposed. However, several analogues designed to take advantage of strong enzyme binding to such a transition state showed little to no inhibition. This result suggests that further work is required to understand the true nature of the transition state stabilised by this enzyme.  相似文献   

11.
Baeyer–Villiger monooxygenase (BVMO)‐mediated regiodivergent conversions of asymmetric ketones can lead to the formation of “normal” or “abnormal” lactones. In a previous study, we were able to change the regioselectivity of a BVMO by mutation of the active‐site residues to smaller amino acids, which thus created more space. In this study, we demonstrate that this method can also be used for other BVMO/substrate combinations. We investigated the regioselectivity of 2‐oxo‐Δ3‐4,5,5‐trimethylcyclopentenylacetyl‐CoA monooxygenase from Pseudomonas putida (OTEMO) for cis‐bicyclo[3.2.0]hept‐2‐en‐6‐one ( 1 ) and trans‐dihydrocarvone ( 2 ), and we were able to switch the regioselectivity of this enzyme for one of the substrate enantiomers. The OTEMO wild‐type enzyme converted (?)‐ 1 into an equal (50:50) mixture of the normal and abnormal products. The F255A/F443V variant produced 90 % of the normal product, whereas the W501V variant formed up to 98 % of the abnormal product. OTEMO F255A exclusively produced the normal lactone from (+)‐ 2 , whereas the wild‐type enzyme was selective for the production of the abnormal product. The positions of these amino acids were equivalent to those mutated in the cyclohexanone monooxygenases from Arthrobacter sp. and Acinetobacter sp. (CHMOArthro and CHMOAcineto) to switch their regioselectivity towards (+)‐ 2 , which suggests that there are hot spots in the active site of BVMOs that can be targeted with the aim to change the regioselectivity.  相似文献   

12.
α‐L ‐Fucosidase activity is associated with several diseases. To study the enzymatic activity change under pathological conditions, we developed a quinone methide‐generating activity‐based probe useful for examining the presence, activity, and localization of human α‐L ‐fucosidase in vivo in the context of Helicobacter pylori infection. In particular, an increase in intracellular fucosidase (Fuca1) activity was found in gastric epithelial cells upon bacterial infection. We further studied the effect of several bacterial stimulants on this enhanced Fuca1 activity and identified lipopolysaccharides to be a major contributing factor.  相似文献   

13.
Glucose oxidase (EC 1.1.3.4) was encapsulated in liposomes (prepared from phosphatidyl choline and cholesterol) by the dehydration–rehydration method. The enzymatic activities of native and liposomal glucose oxidase were followed by the amount of H2O2 obtained in the enzymatic β‐D ‐glucose oxidation. Some characteristics of the liposomal and free glucose oxidase were compared. The enzyme encapsulated in liposomes showed an apparent inhibition by glucose at concentrations higher than 0.28 mol dm?3 with a substrate inhibition constant of 0.95 ± 0.12 mol dm?3. The enzyme entrapped showed an apparent Km value higher than that of the free enzyme. The apparent Vmax of liposomal enzyme decreased by a factor of 0.35 with respect of that of the native enzyme. The optimum temperature of the free and entrapped enzymes remained similar but the liposomal enzyme showed maximal activity at a more acid pH (5.2). The thermal and proteolytic stabilities were enhanced by encapsulation in liposomes. The stabilization factors (relationship between half‐lives of entrapped form and free enzyme) at 45, 50 and 55 °C for liposomal glucose oxidase were 2.6, 1.6 and 1.6, respectively. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
We report the first structure of heptaprenyl diphosphate synthase from Staphylococcus aureus (SaHepPPS), together with an investigation of its mechanism of action and inhibition. The protein is involved in the formation of menaquinone, a key electron transporter in many bacteria, including pathogens. SaHepPPS consists of a “catalytic ” subunit (SaHepPPS‐2) having two “DDXXD” motifs and a “regulatory” subunit (SaHepPPS‐1) that lacks these motifs. High concentrations of the substrates, isopentenyl diphosphate and farnesyl diphosphate, inhibit the enzyme, which is also potently inhibited by bisphosphonates. The most active inhibitors (Ki~200 nm ) were N‐alkyl analogues of zoledronate containing ~C6 alkyl side chains. They were modestly active against S. aureus cell growth, and growth inhibition was partially “rescued” by the addition of menaquinone‐7. Because SaHepPPS is essential for S. aureus cell growth, its structure is of interest in the context of the development of menaquinone biosynthesis inhibitors as potential antibiotic leads.  相似文献   

15.
We screened a small library of thiuram disulfides for inhibition of lymphoid tyrosine phosphatase (LYP) activity. The parent thiuram disulfide, disulfiram, inhibited LYP activity in vitro and in Jurkat T cells, whereas diethyldithiocarbamate failed to inhibit LYP at the concentrations tested. Compound 13 , an N‐(2‐thioxothiazolidin‐4‐one) analogue, was found to be the most potent LYP inhibitor in this series, with an IC50 value of 3 μM . Compound 13 inhibits LYP pseudo‐irreversibly, as evidenced by the time‐dependence of inhibition, with a Ki value of 1.1 μM and a kinact value of 0.004 s?1. The inhibition of LYP by compound 13 could not be reversed significantly by incubation with glutathione or by prolonged dialysis, but could be partially reversed by incubation with dithiothreitol. Compound 13 also inhibited LYP activity in Jurkat T cells.  相似文献   

16.
Arkansas‐grown non‐genetically modified soybean cultivar, R08‐4004, was selected to prepare a protein isolate, which was treated with Alcalase for limited enzymatic hydrolysis. The objective was to optimize the Alcalase hydrolysis condition to produce soy protein hydrolysate (SPH) with high protein yield, low bitterness, and clarity for beverage applications. The degree of hydrolysis ranged between 14 and 52 % during the study at varying incubation times using two different concentrations of Alcalase enzyme. Recovery of soluble protein, between 21 and 53 %, was achieved with a decrease in turbidity. There was an increase in surface hydrophobicity (S0) which is correlated with bitterness of SPH treated with 1.0 AU (3.2 µL/g) of Alcalase 2.4 L. The sodium dodecyl sulfate‐polyacrylamide gel electrophoresis analysis showed a distinct hydrolysis pattern in which 7S globulin and the two acidic sub‐units of 11S globulin were hydrolyzed extensively in comparison to the two basic sub‐units of 11S globulin. Limited enzymatic hydrolysis produced low molecular weight peptides <17 kDa. Among these SPHs, the one derived after 120 min incubation had the highest soluble protein yield (43 %), low S0 value (35.4), low turbidity (0.88), and highest angiotensin‐I converting enzyme (ACE‐I) inhibition activity (66.6 %). This hydrolysate has potential use as protein rich nutraceutical for developing many non‐genetically modified food product applications.  相似文献   

17.
This paper describes the design, synthesis, and biological evaluation of peptidomimetic boronates as inhibitors of the 20S proteasome, a validated target in the treatment of multiple myeloma. The synthesized compounds showed a good inhibitory profile against the ChT‐L activity of 20S proteasome. Compounds bearing a β‐alanine residue at the P2 position were the most active, that is, 3‐ethylphenylamino and 4‐methoxyphenylamino (R)‐1‐{3‐[4‐(substituted)‐2‐oxopyridin‐1(2H)‐yl]propanamido}‐3‐methylbutylboronic acids ( 3 c and 3 d , respectively), and these derivatives showed inhibition constants (Ki) of 17 and 20 nM , respectively. In addition, they co‐inhibited post glutamyl peptide hydrolase activity ( 3 c , Ki=2.57 μM ; 3 d , Ki=3.81 μM ). No inhibition was recorded against the bovine pancreatic α‐chymotrypsin, which thus confirms the selectivity towards the target enzyme. Docking studies of 3 c and related inhibitors into the yeast proteasome revealed the structural basis for specificity. The evaluation of growth inhibitory effects against 60 human tumor cell lines was performed at the US National Cancer Institute. Among the selected compounds, 3 c showed 50 % growth inhibition (GI50) values at the sub‐micromolar level on all cell lines.  相似文献   

18.
Inhibitors of the human enzyme dimethylarginine dimethylaminohydrolase‐1 (DDAH‐1) can raise endogenous levels of asymmetric dimethylarginine (ADMA) and lead to a subsequent inhibition of nitric oxide synthesis. In this study, N5‐(1‐imino‐2‐chloroethyl)‐L ‐ornithine (Cl‐NIO) is shown to be a potent time‐ and concentration‐dependent inhibitor of purified human DDAH‐1 (KI=1.3±0.6 μM ; kinact=0.34±0.07 min?1), with >500‐fold selectivity against two arginine‐handling enzymes in the same pathway. An activity probe is used to measure the “in cell” IC50 value (6.6±0.2 μM ) for Cl‐NIO inhibition of DDAH‐1 artificially expressed within cultured HEK293T cells. A screen of diverse melanoma cell lines reveals that a striking 50/64 (78 %) of melanoma lines tested showed increased levels of DDAH‐1 relative to normal melanocyte control lines. Treatment of the melanoma A375 cell line with Cl‐NIO shows a subsequent decrease in cellular nitric oxide production. Cl‐NIO is a promising tool for the study of methylarginine‐mediated nitric oxide control and a potential therapeutic lead compound for other indications with elevated nitric oxide production, such as septic shock and idiopathic pulmonary fibrosis.  相似文献   

19.
Recent reports document that α‐tetralone (3,4‐dihydro‐2H‐naphthalen‐1‐one) is an appropriate scaffold for the design of high‐potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α‐tetralone and 1‐indanone, the present study involved synthesis of 34 1‐indanone and related indane derivatives as potential inhibitors of recombinant human MAO‐A and MAO‐B. The results show that C6‐substituted indanones are particularly potent and selective MAO‐B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM . C5‐Substituted indanone and indane derivatives are comparatively weaker MAO‐B inhibitors. Although the 1‐indanone and indane derivatives are selective inhibitors of the MAO‐B isoform, a number of homologues are also potent MAO‐A inhibitors, with three homologues possessing IC50 values <0.1 μM . Dialysis of enzyme–inhibitor mixtures further established a selected 1‐indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1‐indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson’s disease and depression.  相似文献   

20.
The hydrolytic resolution of (R,S)‐2,2,2‐trifluoroethyl α‐chlorophenylacetate in water‐saturated isooctane containing Lipase MY(I) at 35 °C is selected as the best reaction condition for producing (R)‐α‐chlorophenyl acetic acid. The kinetic constants, and hence an enantiomeric ratio of 33.6, are estimated and employed for the modeling of time‐course conversions of both substrates by considering product inhibition and enzyme deactivation effects. A successful dynamic kinetic resolution is also achieved, giving the desired (R)‐α‐chlorophenylacetic acid of 93.0% yield and eeP = 89.5% when 80 mmol dm?3 trioctylamine acting as the racemization catalyst and enzyme activator is initially added. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号