首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cremimycin is a 19‐membered macrolactam glycoside antibiotic based on three distinctive substructures: 1) a β‐amino fatty acid starter moiety, 2) a bicyclic macrolactam ring, and 3) a cymarose unit. To elucidate the biosynthetic machineries responsible for these three structures, the cremimycin biosynthetic gene cluster was identified. The cmi gene cluster consists of 33 open reading frames encoding eight polyketide synthases, six deoxysugar biosynthetic enzymes, and a characteristic group of five β‐amino‐acid‐transfer enzymes. Involvement of the gene cluster in cremimycin production was confirmed by a gene knockout experiment. Further, a feeding experiment demonstrated that 3‐aminononanoate is a direct precursor of cremimycin. Two characteristic enzymes of the cremimycin‐type biosynthesis were functionally characterized in vitro. The results showed that a putative thioesterase homologue, CmiS1, catalyzes the Michael addition of glycine to the β‐position of a non‐2‐enoic acid thioester, followed by hydrolysis of the thioester to give N‐carboxymethyl‐3‐aminononanoate. Subsequently, the resultant amino acid was oxidized by a putative FAD‐dependent glycine oxidase homologue, CmiS2, to produce 3‐aminononanoate and glyoxylate. This represents a unique amino transfer mechanism for β‐amino acid biosynthesis.  相似文献   

2.
The putative hydrolase gene bhp from the balhimycin biosynthetic gene cluster has been cloned and overexpressed in Escherichia coli. The corresponding enzyme Bhp was purified to homogeneity by nickel‐chelating chromatography and characterized. Although Bhp has sequence similarities to hydrolases with “haloperoxidase”/perhydrolase activity, it did not show any enzymatic activity with standard “haloperoxidase”/perhydrolase substrates (e.g., monochlorodimedone and phenol red), nonspecific esterase substrates (such as p‐nitrophenyl acetate, p‐nitrophenyl phosphate and S‐thiophenyl acetate) or the model lactonase substrate dihydrocoumarin. However, Bhp could be shown to catalyse the hydrolysis of S‐β‐hydroxytyrosyl‐N‐acetyl cysteamine thioester (β‐OH‐Tyr‐SNAC) with 15 times the efficiency of S‐L ‐tyrosyl‐N‐acetyl cysteamine thioester (L ‐Tyr‐SNAC). This is in agreement with the suggestion that Bhp is involved in balhimycin biosynthesis, during which it was supposed to catalyse the hydrolysis of β‐OH‐Tyr‐S‐PCP (PCP=peptidyl carrier protein) to free β‐hydroxytyrosine (β‐OH‐Tyr) and strongly suggests that Bhp is a thioesterase with high substrate specificity for PCP‐bound β‐OH‐Tyr and not a “haloperoxidase”/perhydrolase or nonspecific esterase.  相似文献   

3.
The diphenyl ether pestheic acid was isolated from the endophytic fungus Pestalotiopsis fici, which is proposed to be the biosynthetic precursor of the unique chloropupukeananes. The pestheic acid biosynthetic gene (pta) cluster was identified in the fungus through genome scanning. Sequence analysis revealed that this gene cluster encodes a nonreducing polyketide synthase, a number of modification enzymes, and three regulators. Gene disruption and intermediate analysis demonstrated that the biosynthesis proceeded through formation of the polyketide backbone, cyclization of a polyketo acid to a benzophenone, chlorination, and formation of the diphenyl ether skeleton through oxidation and hydrolyzation. A dihydrogeodin oxidase gene, ptaE, was essential for diphenyl ether formation, and ptaM encoded a flavin‐dependent halogenase catalyzing chlorination in the biosynthesis. Identification of the pta cluster laid the foundation to decipher the genetic and biochemical mechanisms involved in the pathway.  相似文献   

4.
5.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

6.
Covalent irreversible inhibitors can successfully treat antibiotic‐resistant infections by targeting serine β‐lactamases. However, this strategy is useless for New Delhi metallo‐β‐lactamase (NDM), which uses a non‐covalent catalytic mechanism and lacks an active‐site serine. Here, NDM‐1 was irreversibly inactivated by three β‐lactam substrates: cephalothin, moxalactam, and cefaclor, albeit at supratherapeutic doses (e.g., cefaclor KI=2.3±0.1 mM ; kinact=0.024±0.001 min?1). Inactivation by cephalothin and moxalactam was mediated through Cys208. Inactivation by cefaclor proceeded through multiple pathways, in part mediated by Lys211. Use of a cefaclor metabolite enabled mass spectrometric identification of a +346.0735 Da covalent adduct on Lys211, and an inactivation mechanism is proposed. Lys211 was identified as a promising “handhold” for developing covalent NDM‐1 inhibitors and serves as a conceptual example for creating covalent inhibitors for enzymes with non‐covalent mechanisms.  相似文献   

7.
8.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


9.
Colabomycin E is a new member of the manumycin‐type metabolites produced by the strain Streptomyces aureus SOK1/5‐04 and identified by genetic screening from a library of streptomycete strains. The structures of colabomycin E and accompanying congeners were resolved. The entire biosynthetic gene cluster was cloned and expressed in Streptomyces lividans. Bioinformatic analysis and mutagenic studies identified components of the biosynthetic pathway that are involved in the formation of both polyketide chains. Recombinant polyketide synthases (PKSs) assembled from the components of colabomycin E and asukamycin biosynthetic routes catalyzing the biosynthesis of “lower” carbon chains were constructed and expressed in S. aureus SOK1/5‐04 ΔcolC11–14 deletion mutant. Analysis of the metabolites produced by recombinant strains provided evidence that in both biosynthetic pathways the length of the lower carbon chain is controlled by an unusual chain‐length factor supporting biosynthesis either of a triketide in asukamycin or of a tetraketide in colabomycin E. Biological activity assays indicated that colabomycin E significantly inhibited IL‐1β release from THP‐1 cells and might thus potentially act as an anti‐inflammatory agent.  相似文献   

10.
Both enantiomers of optically pure 4‐bromo‐3‐hydroxybutanoate, which is an important chiral building block in the syntheses of various biologically active compounds including statins, were synthesized from rac‐4‐bromomethyl‐β‐lactone through kinetic resolution. Candida antarctica lipase B (CAL‐B) enantioselectively catalyzes the ring opening of the β‐lactone with ethanol to yield ethyl (R)‐4‐bromo‐3‐hydroxybutanoate with high enantioselectivity (E>200). The unreacted (S)‐4‐bromomethyl‐β‐lactone was converted to ethyl (S)‐4‐bromo‐3‐hydroxybutanoate (>99% ee), which can be further transformed to ethyl (R)‐4‐cyano‐3‐hydroxybutanoate, through an acid‐catalyzed ring opening in ethanol. Molecular modeling revealed that the stereocenter of the fast‐reacting enantiomer, (R)‐bromomethyl‐β‐lactone, is ∼2 Å from the reacting carbonyl carbon. In addition, the slow‐reacting enantiomer, (S)‐4‐bromomethyl‐β‐lactone, encounters steric hindrance between the bromo substituent and the side chain of the Leu278 residue, while the fast‐reacting enantiomer does not have any steric clash.  相似文献   

11.
Phormidolide is a polyketide produced by a cultured filamentous marine cyanobacterium and incorporates a 16‐membered macrolactone. Its complex structure is recognizably derived from a polyketide synthase pathway, but possesses unique and intriguing structural features that prompted interest in investigating its biosynthetic origin. Stable isotope incorporation experiments confirmed the polyketide nature of this compound. We further characterized the phormidolide gene cluster (phm) through genome sequencing followed by bioinformatic analysis. Two discrete trans‐type acyltransferase (trans‐AT) ORFs along with KS‐AT adaptor regions (ATd) within the polyketide synthase (PKS) megasynthases, suggest that the phormidolide gene cluster is a trans‐AT PKS. Insights gained from analysis of the mode of acetate incorporation and ensuing keto reduction prompted our reevaluation of the stereochemistry of phormidolide hydroxy groups located along the linear polyketide chain.  相似文献   

12.
13.
Genome sequence analysis of Streptomyces sp. LZ35 has revealed a large number of secondary metabolite pathways, including one encoded in an orphan type I polyketide synthase gene cluster that contains a putative chorismatase/3‐hydroxybenzoate synthase gene. Mutagenesis and comparative metabolic profiling led to the identification of cuevaene A as the metabolic product of the gene cluster, thus making it the first 3‐HBA containing polyketide biosynthetic gene cluster described to date. Cuv10 was proven to be responsible for the conversion of chorismate into 3‐HBA; Cuv18 is speculated to be responsible for the 6‐hydroxylation of 3‐HBA during polyketide chain elongation. Additionally, several pathway‐specific regulatory factors that affect the production of cuevaene A were identified. Our results indicate that targeted inactivation of a gene followed by comparative metabolic profiling is a useful approach to identify and characterize cryptic biosynthetic gene clusters.  相似文献   

14.
FD‐891 is a 16‐membered cytotoxic antibiotic macrolide that is especially active against human leukemia such as HL‐60 and Jurkat cells. We identified the FD‐891 biosynthetic (gfs) gene cluster from the producer Streptomyces graminofaciens A‐8890 by using typical modular type I polyketide synthase (PKS) genes as probes. The gfs gene cluster contained five typical modular type I PKS genes (gfsA, B, C, D, and E), a cytochrome P450 gene (gfsF), a methyltransferase gene (gfsG), and a regulator gene (gfsR). The gene organization of PKSs agreed well with the basic polyketide skeleton of FD‐891 including the oxidation states and α‐alkyl substituent determined by the substrate specificities of the acyltransferase (AT) domains. To clarify the involvement of the gfs genes in the FD‐891 biosynthesis, the P450 gfsF gene was inactivated; this resulted in the loss of FD‐891 production. Instead, the gfsF gene‐disrupted mutant accumulated a novel FD‐891 analogue 25‐O‐methyl‐FD‐892, which lacked the epoxide and the hydroxyl group of FD‐891. Furthermore, the recombinant GfsF enzyme coexpressed with putidaredoxin and putidaredoxin reductase converted 25‐O‐methyl‐FD‐892 into FD‐891. In the course of the GfsF reaction, 10‐deoxy‐FD‐891 was isolated as an enzymatic reaction intermediate, which was also converted into FD‐891 by GfsF. Therefore, it was clearly found that the cytochrome P450 GfsF catalyzes epoxidation and hydroxylation in a stepwise manner in the FD‐891 biosynthesis. These results clearly confirmed that the identified gfs genes are responsible for the biosynthesis of FD‐891 in S. graminofaciens.  相似文献   

15.
Aristeromycin is a unique carbocyclic nucleoside antibiotic produced by Streptomyces citricolor. In order to elucidate its intriguing carbocyclic formation, we used a genome‐mining approach to identify the responsible enzyme. In silico screening with known cyclitol synthases involved in primary metabolism, such as myo‐inositol‐1‐phosphate synthase (MIPS) and dehydroqunate synthase (DHQS), identified a unique MIPS orthologue (Ari2) encoded in the genome of S. citricolor. Heterologous expression of the gene cluster containing ari2 with a cosmid vector in Streptomyces albus resulted in the production of aristeromycin, thus indicating that the cloned DNA region (37.5 kb) with 33 open reading frames contains its biosynthetic gene cluster. We verified that Ari2 catalyzes the formation of a novel five‐membered cyclitol phosphate from d ‐fructose 6‐phosphate (F6P) with NAD+ as a cofactor. This provides insight into cyclitol phosphate synthase as a member of the MIPS family of enzymes. A biosynthetic pathway to aristeromycin is proposed based on bioinformatics analysis of the gene cluster.  相似文献   

16.
We describe a simple and efficient enzymatic tandem reaction for the preparation of enantiomerically pure β‐phenylalanine and its analogues from the corresponding racemates. In this process, phenylalanine aminomutase (PAM) catalyzes the stereoselective isomerization of (R)‐β‐phenylalanines to (S)‐α‐phenylalanines, which are in situ transformed to cinnamic acids by phenylalanine ammonia lyase (PAL). Preparative scale conversions are done with a mutated PAM with enhanced catalytic activity.  相似文献   

17.
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin‐activating enzyme E1 in the ubiquitin–proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase–nonribosomal peptide synthase (PKS‐NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS‐NRPS gene by Agrobacterium‐mediated transformation confirms that HimA PKS‐NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.  相似文献   

18.
The biosynthesis of aromatic polyketides derived from type II polyketide synthases (PKSs) is complex, and it is not uncommon that highly similar gene clusters give rise to diverse structural architectures. The act biosynthetic gene cluster (BGC) of the model actinomycete Streptomyces coelicolor A3(2) is an archetypal type II PKS. Here we show that the act BGC also specifies the aromatic polyketide GTRI‐02 ( 1 ) and propose a mechanism for the biogenesis of its 3,4‐dihydronaphthalen‐1(2H)‐one backbone. Polyketide 1 was also produced by Streptomyces sp. MBT76 after activation of the act‐like qin gene cluster by overexpression of the pathway‐specific activator. Mining of this strain also identified dehydroxy‐GTRI‐02 ( 2 ), which most likely originated from dehydration of 1 during the isolation process. This work shows that even extensively studied model gene clusters such as act of S. coelicolor can still produce new chemistry, offering new perspectives for drug discovery.  相似文献   

19.
The stereoselective synthesis of chiral 1,3‐diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of β‐hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a β‐hydroxy‐β‐trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2‐trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the β‐hydroxy‐β‐trifluoromethyl ketone was identified after purification and subsequent MALDI‐TOF mass spectrometric analysis. As a result, a new NADP+‐dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the β‐hydroxy‐β‐trifluoromethyl ketone to its corresponding 1,3‐diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N‐ or C‐terminal His‐tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N‐terminal His‐tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the β‐hydroxy‐β‐trifluoromethyl ketone.  相似文献   

20.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号