Profile hidden Markov models (HMMs) were used to predict the configuration of secondary alcohols and α‐methyl branches of modular polyketides. Based on the configurations of two chiral centers in these polyketides, 78 ketoreductases were classified into four different types of polyketide producers. The identification of positions that discriminate between these protein families was followed by fitting six profile HMMs to the data set and the corresponding subsets, to model the conserved regions of the protein types. Ultimately, the profile HMMs described herein predict protein subtypes based on the complete information‐rich region; consequently, slight changes in a multiple sequence alignment do not significantly alter the outcome of this classification method. Additionally, Viterbi scores can be used to assess the reliability of the classification. 相似文献
Working together or apart : Separating multimodular PKS enzymes into their respective monomodules by replacing the natural intraprotein linkers (illustrated in red in the figure) with a matched docking domain pair from a heterologous PKS system, leads to only small losses in overall in vivo polyketide product and increased efficiency at utilizing polyketide pathway intermediates to prime the biosynthetic process.
Four new analogues of the gilvocarcin‐type aryl‐C‐glycoside antitumor compounds, namely 4′‐hydroxy gilvocarcin V (4′‐OH‐GV), 4′‐hydroxy gilvocarcin M, 4′‐hydroxy gilvocarcin E and 12‐demethyl‐defucogilvocarcin V, were produced through inactivation of the gilU gene. The 4′‐OH‐analogues showed improved activity against lung cancer cell lines as compared to their parent compounds without 4′‐OH group (gilvocarcins V and E). The structures of the sugar‐containing new mutant products indicate that the enzyme GilU acts as an unusual ketoreductase involved in the biosynthesis of the C‐glycosidically linked deoxysugar moiety of the gilvocarcins. The structures of the new gilvocarcins indicate substrate flexibility of the post‐polyketide synthase modifying enzymes, particularly the C‐glycosyltransferase and the enzyme responsible for the sugar ring contraction. The results also shed light into biosynthetic sequence of events in the late steps of biosynthetic pathway of gilvocarcin V. 相似文献
Modular biocatalysis is responsible for the generation of countless bioactive products and its mining remains a major focus for drug discovery purposes. One of the enduring hurdles is the isolation of biosynthetic intermediates in a readily‐analysed form. We prepared a series of nonhydrolysable pantetheine and N‐acetyl cysteamine mimics of the natural (methyl)malonyl extender units recruited for polyketide formation. Using these analogues as competitive substrates, we were able to trap and off‐load diketide and triketide species directly from an in vitro reconstituted type I polyketide synthase, the 6‐deoxyerythronolide B synthase 3 (DEBS3). The putative intermediates, which were extracted in organic solvent and characterised by LC‐HR‐ESI‐MS, are the first of their kind and prove that small‐molecule chain terminators can be used as convenient probes of the biosynthetic process.相似文献
By miscounting the number of malonyl‐CoA condensations, the stilbene synthase (STS) from Pinus sylvestris forms the previously unknown pentaketide, 2‐malonylresveratrol, in addition to the expected tetraketide resveratrol (see scheme). This is the first time that such tetra‐ and pentaketide‐CoA derivatives have been observed; this suggests that these products might be free intermediates in the biosynthesis of stilbenes.
Caught in a trap . In this study trapped polyketide species (see figure) were off‐loaded from a type III PKS by novel nonhydrolyzable malonyl coenzyme A analogues in which a methylene group or an oxygen atom replaces the sulfur atom of malonyl‐CoA. This strategy allows the straightforward characterisation of intermediates of polyketide biosynthesis by LC‐HR‐ESI‐MS/MS and provides valuable insights on the mechanism and timing of polyketide formation.
The biosynthesis of aromatic polyketides derived from type II polyketide synthases (PKSs) is complex, and it is not uncommon that highly similar gene clusters give rise to diverse structural architectures. The act biosynthetic gene cluster (BGC) of the model actinomycete Streptomyces coelicolor A3(2) is an archetypal type II PKS. Here we show that the act BGC also specifies the aromatic polyketide GTRI‐02 ( 1 ) and propose a mechanism for the biogenesis of its 3,4‐dihydronaphthalen‐1(2H)‐one backbone. Polyketide 1 was also produced by Streptomyces sp. MBT76 after activation of the act‐like qin gene cluster by overexpression of the pathway‐specific activator. Mining of this strain also identified dehydroxy‐GTRI‐02 ( 2 ), which most likely originated from dehydration of 1 during the isolation process. This work shows that even extensively studied model gene clusters such as act of S. coelicolor can still produce new chemistry, offering new perspectives for drug discovery. 相似文献
Type II polyketide synthases iteratively generate a nascent polyketide thioester of the acyl carrier protein (ACP); this is structurally modified to produce an ACP‐free intermediate towards the final metabolite. However, the timing of ACP off‐loading is not well defined because of the lack of an apparent thioesterase (TE) among relevant biosynthetic enzymes. Here, ActIV, which had been assigned as a second ring cyclase (CYC) in actinorhodin (ACT) biosynthesis, was shown to possess TE activity in vitro with a model substrate, anthraquinone‐2‐carboxylic acid‐N‐acetylcysteamine. In order to investigate its function further, the ACT biosynthetic pathway in Streptomyces coelicolor A3(2) was reconstituted in vitro in a stepwise fashion up to (S)‐DNPA, and the product of ActIV reaction was characterized as an ACP‐free bicyclic intermediate. These findings indicate that ActIV is a bifunctional CYC‐TE and provide clear evidence for the release timing of the intermediate from the ACP anchor. 相似文献
The purple photosynthetic bacterium Rhodospirillum centenum has a putative type III polyketide synthase gene (rpsA). Although rpsA was known to be transcribed during the formation of dormant cells, the reaction catalyzed by RpsA was unknown. Thus we examined the RpsA reaction in vitro, using various fatty acyl‐CoAs with even numbers of carbons as starter substrates. RpsA produced tetraketide pyranones as major compounds from one C10–14 fatty acyl‐CoA unit, one malonyl‐CoA unit and two methylmalonyl‐CoA units. We identified these products as 4‐hydroxy‐3‐methyl‐6‐(1‐methyl‐2‐oxoalkyl)pyran‐2‐ones by NMR analysis. RpsA is the first bacterial type III PKS that prefers to incorporate two molecules of methylmalonyl‐CoA as the extender substrate. In addition, in vitro reactions with 13C‐labeled malonyl‐CoA revealed that RpsA produced tetraketide 6‐alkyl‐4‐hydroxy‐1,5‐dimethyl‐2‐oxocyclohexa‐3,5‐diene‐1‐carboxylic acids from C14–20 fatty acyl‐CoAs. This class of compounds is likely synthesized through aldol condensation induced by methine proton abstraction. No type III polyketide synthase that catalyzes this reaction has been reported so far. These two unusual features of RpsA extend the catalytic functions of the type III polyketide synthase family. 相似文献
The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti‐MRSA antibiotic mupirocin, removal of a C8‐hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non‐haem‐iron(II)/α‐ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4‐hydroxylates various pseudomonic acids whereas C8‐OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4‐Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future. 相似文献
The biosynthetic pathway to the unusual tetronate ring of certain polyketide natural products, including the antibiotics abyssomicin and tetronomycin (TMN) and the antitumour compound chlorothricin (CHL), is presently unknown. The gene clusters governing chlorothricin and tetronomycin biosynthesis both contain a gene encoding an atypical member of the FkbH family of enzymes, which has previously been shown to synthesise glyceryl-S-acyl carrier protein (ACP) as the first step in production of unusual extender units for modular polyketide biosynthesis. We show here that purified recombinant FkbH-like protein, Tmn16, from the TMN gene cluster catalyses the efficient transfer of a glyceryl moiety from D-1,3-bisphosphoglycerate (1,3-BPG) to either of the dedicated ACPs, Tmn7a and ChlD2, to form glyceryl-S-ACP, which directly implicates this compound as an intermediate in tetronate biosynthesis as well. Neither Tmn16 nor Tmn7a produced glyceryl-S-ACP when incubated, respectively, with analogous ACP and FkbH-like proteins from a known extender-unit pathway; this indicates a highly selective channelling of glycolytic metabolites into tetronate biosynthesis. 相似文献
Polyether ionophores, such as monensin A, are known to be biosynthesised, like many other antibiotic polyketides, on giant modular polyketide synthases (PKSs), but the intermediates and enzymes involved in the subsequent steps of oxidative cyclisation remain undefined. In particular there has been no agreement on the mechanism and timing of the final polyketide chain release. We now report evidence that MonCII from the monensin biosynthetic gene cluster in Streptomyces cinnamonensis, which was previously thought to be an epoxide hydrolase, is a novel thioesterase that belongs to the alpha/beta-hydrolase structural family and might catalyse this step. Purified recombinant MonCII was found to hydrolyse several thioester substrates, including an N-acetylcysteamine thioester derivative of monensin A. Further, incubation with a hallmark inhibitor of such enzymes, phenylmethanesulfonyl fluoride, led to inhibition of the thioesterase activity and to the accumulation of an acylated form of MonCII. These findings require a reassessment of the role of other enzymes implicated in the late stages of polyether ionophore biosynthesis. 相似文献