首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Genome mining is a powerful method for finding novel secondary metabolites. In our study on the biosynthetic gene cluster for the cyclic octapeptides surugamides A–E (inhibitors of cathepsin B), we found a putative gene cluster consisting of four successive non‐ribosomal peptide synthetase (NRPS) genes, surA, surB, surC, and surD. Prediction of amino acid sequence based on the NRPSs and gene inactivation revealed that surugamides A–E are produced by two NRPS genes, surA and surD, which were separated by two NRPS genes, surB and surC. The latter genes are responsible for the biosynthesis of an unrelated peptide, surugamide F. The pattern of intercalation observed in the sur genes is unprecedented. The structure of surugamide F, a linear decapeptide containing one 3‐amino‐2‐methylpropionic acid (AMPA) residue, was determined by spectroscopic methods and was confirmed by solid‐phase peptide synthesis.  相似文献   

2.
A gene encoding a putative dimodular nonribosomal peptide synthetase (NRPS) was identified within a gene cluster of Aspergillus fumigatus, a species reported to produce fumitremorgins and other prenylated alkaloids. The gene was deleted and overexpressed in the genome reference strain Af293, and was also expressed in the naïve host Aspergillus nidulans, which lacks the equivalent gene cluster. While neither fumitremorgins nor the dipeptide brevianamide F (cyclo‐L ‐Trp‐L ‐Pro), an early intermediate, were detected in wild‐type and deletion strains of A. fumigatus, brevianamide F accumulated in fungal cultures following increased expression of the NRPS gene in both A. fumigatus and A. nidulans. We conclude that the gene Afu8g00170, named ftmA, encodes the NRPS brevianamide synthetase. Brevianamide F is the precursor of a variety of fungal prenylated alkaloids with biological activity, including fumitremorgins A, B and C and tryprostatin B.  相似文献   

3.
The alkane monooxygenase AlkBGT from Pseudomonas putida GPo1 constitutes a versatile enzyme system for the ω‐oxyfunctionalization of medium chain‐length alkanes. In this study, recombinant Escherichia coli W3110 expressing alkBGT was investigated as whole‐cell catalyst for the regioselective biooxidation of fatty acid methyl esters to terminal alcohols. The ω‐functionalized products are of general economic interest, serving as building blocks for polymer synthesis. The whole‐cell catalysts proved to functionalize fatty acid methyl esters with a medium length alkyl chain specifically at the ω‐position. The highest specific hydroxylation activity of 104 U gCDW−1 was obtained with nonanoic acid methyl ester as substrate using resting cells of E. coli W3110 (pBT10). In an optimized set‐up, maximal 9‐hydroxynonanoic acid methyl ester yields of 95% were achieved. For this specific substrate, apparent whole‐cell kinetic parameters were determined with a Vmax of 204±9 U gCDW−1, a substrate uptake constant (KS) of 142±17 μM, and a specificity constant Vmax/KS of 1.4 U gCDW−1 μM −1 for the formation of the terminal alcohol. The same E. coli strain carrying additional alk genes showed a different substrate selectivity. A comparison of biocatalysis with whole cells and enriched enzyme preparations showed that both substrate availability and enzyme specificity control the efficiency of the whole‐cell bioconversion of the longer and more hydrophobic substrate dodecanoic acid methyl ester. The efficient coupling of redox cofactor oxidation and product formation, as determined in vitro, combined with the high in vivo activities make E. coli W3110 (pBT10) a promising biocatalyst for the preparative synthesis of terminally functionalized fatty acid methyl esters.  相似文献   

4.
Fungal hybrid enzymes consisting of a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) module are involved in the biosynthesis of a vast array of ecologically and medicinally relevant natural products. Whereas a dozen gene clusters could be assigned to the requisite PKS–NRPS pathways, the programming of the multifunctional enzymes is still enigmatic. Through engineering and heterologously expressing a chimera of PKS (lovastatin synthase, LovB) and NRPS (cytochalasin synthase, CheA) in Aspergillus terreus, we noted the potential incompatibility of a fungal highly reducing PKS (hrPKS) with the NRPS component of fungal PKS–NRPS hybrids. To rationalize the unexpected outcome of the gene fusion experiments, we conducted extensive bioinformatic analyses of fungal PKS–NRPS hybrids and LovB‐type PKS. From motif studies and the function of the engineered chimeras, a noncanonical function of C‐terminal condensation (C) domains in truncated PKS–NRPS homologues was inferred. More importantly, sequence alignments and phylogenetic trees revealed an evolutionary imprint of the PKS–NRPS domains, which reflect the evolutionary history of the entire megasynthase. Furthermore, a detailed investigation of C and adenylation (A) domains provides support for a scenario in which not only the A domain but also the C domain participates in amino acid selection. These findings shed new light on the complex code of this emerging class of multifunctional enzymes and will greatly facilitate future combinatorial biosynthesis and pathway engineering approaches towards natural product analogues.  相似文献   

5.
Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.  相似文献   

6.
An enzyme catalysing the essential dephosphorylation of the riboflavin precursor, 5‐amino‐6‐ribitylamino‐2,4(1H,3H)‐pyrimidinedione 5′‐phosphate ( 6 ), was purified about 800‐fold from a riboflavin‐producing Bacillus subtilis strain, and was assigned as the translation product of the ycsE gene by mass spectrometry. YcsE is a member of the large haloacid dehalogenase (HAD) superfamily. The recombinant protein was expressed in Escherichia coli. It catalyses the hydrolysis of 6 (vmax, 12 μmol mg?1 min?1; KM, 54 μm ) and of FMN (vmax, 25 μmol mg?1 min?1; KM, 135 μm ). A ycsE deletion mutant of B. subtilis was not riboflavin dependent. Two additional proteins (YwtE, YitU) that catalyse the hydrolysis of 6 at appreciable rates were identified by screening 13 putative HAD superfamily members from B. subtilis. The evolutionary processes that have resulted in the handling of an essential step in the biosynthesis of an essential cofactor by a consortium of promiscuous enzymes require further analysis.  相似文献   

7.
Translocase MraY is the site of action of lysis protein E from bacteriophage ?X174. Previous genetic studies have shown that mutation F288L in transmembrane helix 9 of E. coli MraY confers resistance to protein E. Construction of a helical wheel model for transmembrane helix 9 of MraY and the transmembrane domain of protein E enabled the identification of an Arg‐Trp‐x‐x‐Trp (RWxxW) motif in protein E that might interact with Phe288 of MraY and the neighbouring Glu287. This motif is also found in a number of cationic antimicrobial peptide sequences. Synthetic dipeptides and pentapeptides based on the RWxxW consensus sequence showed inhibition of particulate E. coli MraY activity (IC50 200–600 μM ), and demonstrated antimicrobial activity against E. coli (MIC 31–125 μg mL?1). Cationic antimicrobial peptides at a concentration of 100 μg mL?1 containing Arg‐Trp sequences also showed 30–60 % inhibition of E. coli MraY activity. Assay of the synthetic peptide inhibitors against recombinant MraY enzymes from Bacillus subtilis, Pseudomonas aeruginosa, and Micrococcus flavus (all of which lack Phe288) showed reduced levels of enzyme inhibition, and assay against recombinant E. coli MraY F288L and an E287A mutant demonstrated either reduced or no detectable enzyme inhibition, thus indicating that these peptides interact at this site. The MIC of Arg‐Trp‐octyl ester against E. coli was increased eightfold by overexpression of mraY, and was further increased by overexpression of the mraY mutant F288L, also consistent with inhibition at the RWxxW site. As this site is on the exterior face of the cytoplasmic membrane, it constitutes a potential new site for antimicrobial action, and provides a new cellular target for cationic antimicrobial peptides.  相似文献   

8.
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin‐activating enzyme E1 in the ubiquitin–proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase–nonribosomal peptide synthase (PKS‐NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS‐NRPS gene by Agrobacterium‐mediated transformation confirms that HimA PKS‐NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.  相似文献   

9.
Thienodolin (THN) features a tricyclic indole‐S‐hetero scaffold that encompasses two unique carbon–sulfur bonds. Although its biosynthetic gene cluster has been recently identified in Streptomyces albogriseolus, the essential enzymes for the formation of C?S bonds have been relatively unexplored. Here, we isolated and characterized a new biosynthetic gene cluster from Streptomyces sp. FXJ1.172. Heterologous expression, systematic gene inactivation, and in vitro biochemical characterization enable us to determine the minimum set of genes for THN synthesis, and an aminotransferase (ThnJ) for catalyzing the downstream conversion of tryptophan chlorination. In addition, we evaluated (and mainly excluded) a previously assumed pivotal intermediate by feeding experiments. With these results, we narrowed down four enzymes (ThnC–F) that are responsible for the two unprecedented C?S bond formations. Our study provides a solid basis for further unraveling of the unique C?S mechanisms.  相似文献   

10.
Three polyesters—poly(ethylene terephthalate), poly(2‐methyl‐1,3‐propylene terephthalate‐co‐ethylene terephthalate), and poly(1,4‐cyclohexylene terephthalate‐co‐ethylene terephthalate)—were preirradiated with 60Co‐γ‐rays. Then, acrylic acid and N‐vinylformamide were grafted to these irradiated fibers. Fibers grafted with N‐vinylformamide were further hydrolyzed with acid so that the amide groups would convert into amino groups, and they were treated with glutaraldehyde so that aldehyde groups would be introduced. Chitosan or chitooligosaccharide was then grafted to these fibers via either esterification or imine formation. Four pathogenic bacteria—methicillin‐resistant Staphylococcus aureus‐1 (MRSA), Staphylococcus aureus‐2, Escherichid coli, and Pseudomonas aeruginosa—were tested to determine the antibacterial activities of chitosan‐grafted and chitooligosaccharide‐grafted fibers. The results showed that grafting chitosan via imine formation could achieve a higher surface density for amino groups and give higher antibacterial activity to those four bacteria tested. The antibacterial activity for E. coli was the highest and that for MRSA was the lowest among the four bacteria tested. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2977–2983, 2002  相似文献   

11.
De‐N‐acetylases of β‐(1→6)‐D ‐N‐acetylglucosamine polymers (PNAG) and β‐(1→4)‐D ‐N‐acetylglucosamine residues in peptidoglycan are attractive targets for antimicrobial agents. PNAG de‐N‐acetylases are necessary for biofilm formation in numerous pathogenic bacteria. Peptidoglycan de‐N‐acetylation facilitates bacterial evasion of innate immune defenses. To target these enzymes, transition‐state analogue inhibitors containing a methylphosphonamidate have been synthesized through a direct Staudinger–phosphonite reaction. The inhibitors were tested on purified PgaB, a PNAG de‐N‐acetylase from Escherichia coli, and PgdA, a peptidoglycan de‐N‐acetylase from Streptococcus pneumonia. Herein, we describe the most potent inhibitor of peptidoglycan de‐N‐acetylases reported to date (Ki=80 μM ). The minimal inhibition of PgaB observed provides insight into key structural and functional differences in these enzymes that will need to be considered during the development of future inhibitors.  相似文献   

12.
Griseoviridin (GV) and viridogrisein (VG, also referred to as etamycin), produced by Streptomyces griseoviridis, are two chemically unrelated compounds belonging to the streptogramin family. Both of these natural products demonstrate broad‐spectrum antibacterial activity and constitute excellent candidates for future drug development. To elucidate the biosynthetic machinery associated with production of these two unique antibiotics, the gene cluster responsible for both GV and VG production was identified within the Streptomyces griseoviridis genome and characterized, and its function in GV and VG biosynthesis was confirmed by inactivation of 30 genes and complementation experiments. This sgv gene cluster is localized to a 105 kb DNA region that consists of 36 open reading frames (ORFs), including four nonribosomal peptide synthetases (NRPSs) for VG biosynthesis and a set of hybrid polyketide synthases (PKS)‐NRPSs with a discrete acyltransferase (AT), SgvQ, to assemble the GV backbone. The enzyme encoding genes for VG versus GV biosynthesis are separated into distinct “halves” of the cluster. A series of four genes: sgvA, sgvB, sgvC, and sgvK, were found downstream of the PKS‐NRPS; these likely code for construction of a γ‐butyrolactone (GBL)‐like molecule. GBLs and the corresponding GBL receptor systems are the highest ranked regulators that are able to coordinate the two streptomyces antibiotic regulatory protein (SARP) family positive regulators SgvR2 and SgvR3; both are key biosynthetic activators. Models of GV, VG, and GBL biosynthesis were proposed by using functional gene assignments, determined on the basis of bioinformatics analysis and further supported by in vivo gene inactivation experiments. Overall, this work provides new insights into the biosyntheses of the GV and VG streptogramins that are potentially applicable to a host of combinatorial biosynthetic scenarios.  相似文献   

13.
We have previously shown that the β‐aminopeptidases BapA from Sphingosinicella xenopeptidilytica and DmpA from Ochrobactrum anthropi can catalyze reactions with non‐natural β3‐peptides and β3‐amino acid amides. Here we report that these exceptional enzymes are also able to utilize synthetic dipeptides with N‐terminal β2‐amino acid residues as substrates under aqueous conditions. The suitability of a β2‐peptide as a substrate for BapA or DmpA was strongly dependent on the size of the Cα substituent of the N‐terminal β2‐amino acid. BapA was shown to convert a diastereomeric mixture of the β2‐peptide H‐β2hPhe‐β2hAla‐OH, but did not act on diastereomerically pure β23‐dipeptides containing an N‐terminal β2‐homoalanine. In contrast, DmpA was only active with the latter dipeptides as substrates. BapA‐catalyzed transformation of the diastereomeric mixture of H‐β2hPhe‐β2hAla‐OH proceeded along two highly S‐enantioselective reaction routes, one leading to substrate hydrolysis and the other to the synthesis of coupling products. The synthetic route predominated even at neutral pH. A rise in pH of three log units shifted the synthesis‐to‐hydrolysis ratio (vS/vH) further towards peptide formation. Because the equilibrium of the reaction lies on the side of hydrolysis, prolonged incubation resulted in the cleavage of all peptides that carried an N‐terminal β‐amino acid of S configuration. After completion of the enzymatic reaction, only the S enantiomer of β2‐homophenylalanine was detected (ee>99 % for H‐(S)‐β2‐hPhe‐OH, E>500); this confirmed the high enantioselectivity of the reaction. Our findings suggest interesting new applications of the enzymes BapA and DmpA for the production of enantiopure β2‐amino acids and the enantioselective coupling of N‐terminal β2‐amino acids to peptides.  相似文献   

14.
The myxobacterial strain Nannocystis pusilla B150 synthesizes the structurally new polyketides phenylnannolone A–C. Apart from some common volatiles and siderophores, these are the first natural products from the genus Nannocystis. Phenylnannolone A shows inhibitory activity towards the ABCB1 gene product P‐glycoprotein and reverses daunorubicin resistance in cancer cells. To decipher the biochemical reactions leading to the formation of phenylnannolone A, the putative biosynthetic genes were identified (phn1, phn2). Phn2 is a polyketide synthase (PKS) with an NRPS‐like loading module, and its domain order is consistent with the phenylnannolone A structure. The functionality and substrate selectivity of the loading module were determined by means of a γ‐18O4‐ATP pyrophosphate exchange and a phosphopantetheine ejection assay. A specific activation of cinnamic acid by the AMP‐ligase was detected. Phn1 is a putative butyryl‐CoA carboxylase (BCC), providing ethylmalonyl‐CoA for the formation of the ethyl‐substituted part of phenylnannolone A. Phn1 is the first BCC found in biosynthetic genes for an ethyl‐substituted natural compound. Biosynthesis of phenylnannolone A, putatively encoded by phn1 and phn2, thus utilizes the first biosynthetic machinery in which both a BCC and a PKS are involved.  相似文献   

15.
Multimeric uridine phosphorylase (UP) and purine nucleoside phosphorylase (PNP) of Bacillus subtilis have been expressed from genes cloned in Escherichia coli, purified, characterized, immobilized and stabilized on solid support. A new immobilization strategy has been developed for UP onto Sepabeads coated with polyethyleneamine followed by cross‐linking with aldehyde‐dextran. PNP has been immobilized onto glyoxyl‐agarose. At pH 10 and 45 °C these derivatives catalyzed the transglycosylation of 2′‐deoxyuridine to 2′‐deoxyguanosine in high yield (92%). Under the same conditions the not immobilized enzymes were promptly inactivated.  相似文献   

16.
Two analogues of the discontinued tumor vascular‐disrupting agent verubulin (Azixa®, MPC‐6827, 1 ) featuring benzo‐1,4‐dioxan‐6‐yl (compound 5 a ) and N‐methylindol‐5‐yl (compound 10 ) residues instead of the para‐anisyl group on the 4‐(methylamino)‐2‐methylquinazoline pharmacophore, were prepared and found to exceed the antitumor efficacy of the lead compound. They were antiproliferative with single‐digit nanomolar IC50 values against a panel of nine tumor cell lines, while not affecting nonmalignant fibroblasts. Indole 10 surpassed verubulin in seven tumor cell lines including colon, breast, ovarian, and germ cell cancer cell lines. In line with docking studies indicating that compound 10 may bind the colchicine binding site of tubulin more tightly (Ebind=?9.8 kcal mol?1) than verubulin (Ebind=?8.3 kcal mol?1), 10 suppressed the formation of vessel‐like tubes in endothelial cells and destroyed the blood vessels in the chorioallantoic membrane of fertilized chicken eggs at nanomolar concentrations. When applied to nude mice bearing a highly vascularized 1411HP germ cell xenograft tumor, compound 10 displayed pronounced vascular‐disrupting effects that led to hemorrhages and extensive central necrosis in the tumor.  相似文献   

17.
Coumermycin A1 is an aminocoumarin antibiotic produced by Streptomyces rishiriensis. It contains three pyrrole rings, that is, two terminal 5‐methyl‐pyrrole‐2‐carboxyl moieties and a central 3‐methylpyrrole‐2,4‐dicarboxylic acid moiety. The biosynthesis of the terminal pyrrole moieties has been elucidated previously. However, the biosynthetic precursors of the central pyrrole moiety have remained unknown, and none of the genes or enzymes involved in its formation has been identified. We now show that five genes, contained in a contiguous 4.7 kb region within the coumermycin biosynthetic gene cluster, are required for the biosynthesis of this central pyrrole moiety. Each of these genes was deleted individually, resulting in a strong reduction or an abolishment of coumermycin production. External feeding of the central pyrrole moiety restored coumermycin production. One of these genes shows similarity to L ‐threonine kinase genes. Feeding of [U‐13C,15N]L ‐threonine and 13C NMR analysis of the resulting compound unequivocally proved that threonine was incorporated intact into the central pyrrole (19 % enrichment) to provide the heterocyclic nitrogen as well as four of the seven carbons of this moiety. Therefore, this pyrrole is formed via a new, hitherto unknown biosynthetic pathway. A hypothesis for the reaction sequence leading to the central pyrrole moiety of coumermycin A1 is presented.  相似文献   

18.
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched‐chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co‐workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C‐terminal, N‐terminal, and C‐ and N‐terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN14–ΔC89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd) of ΔN14–ΔC89 when binding CSUs of different species was found to be 9.3–66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN14–ΔC89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.  相似文献   

19.
The Rv3377c gene from the Mycobacterium tuberculosis H37 genome is specifically limited to those Mycobacterium species that cause tuberculosis. We have demonstrated that the gene product of Rv3377c is a diterpene cyclase that catalyzes the formation of tuberculosinol from geranylgeranyl diphosphate (GGPP). However, the characteristics of this enzyme had not previously been studied in detail with homogeneously purified enzyme. The purified enzyme catalyzed the synthesis of tuberculosinyl diphosphate from GGPP, but it did not bring about the synthesis of tuberculosinol. Optimal conditions for the highest activity were found to be as follows: pH 7.5, 30 °C, MgII (0.1 mM ), and Triton X‐100 (0.1 %). Under these conditions, the kinetic values of KM and kcat were determined to be 11.7±1.9 μM for GGPP and 12.7±0.7 min?1, respectively, whereas the specific activity was 186 nmol min?1 mg?1. The enzyme activity was inhibited at substrate concentrations higher than 50 μM . The catalytic activity was strongly inhibited by 15‐aza‐dihydrogeranylgeraniol and 5‐isopropyl‐N,N,N,2‐tetramethyl‐4‐(piperidine‐1‐carbonyloxy)benzenaminium chloride (Amo‐1618). The DXDTT293–297 motif, corresponding to the DXDDTA motif conserved among terpene cyclases, was mutated in order to investigate its function. The middle D295 was found to be the most crucial entity for the catalysis. D293 and two threonine residues function synergistically to enhance the acidity of D295, possibly through hydrogen‐bonding networks. The Rv3377c enzyme could also react with (14R/S)‐14,15‐oxidoGGPP to generate 3α‐ and 3β‐hydroxytuberculosinyl diphosphate. Conformational analyses were carried out with deuterium‐labeled GGPP and oxidoGGPP. We found that GGPP and (14R)‐oxidoGGPP adopted a chair/chair conformation, but (14S)‐oxidoGGPP adopted a boat/chair conformation. Interestingly, the conformations of oxidoGGPP for the A‐ring formation are the opposite of those of oxidosqualene when it is used as a substrate by squalene cyclases for the biosynthesis of hopene and tetrahymanol. (3R)‐Oxidosqualene is folded in a boat conformation, whereas (3S)‐2,3‐oxidosqualene folds into a chair conformation, for the formation of the A‐rings of the hopene and tetrahymanol skeletons, respectively.  相似文献   

20.
Genetic approaches have greatly contributed to our understanding of nonribosomal peptide biosynthetic machinery; however, proteomic investigations are limited. Here, we developed a highly sensitive detection strategy for multidomain nonribosomal peptide synthetases (NRPSs) by using a multiple‐labeling technique with active‐site‐directed probes for adenylation domains. When applied to gramicidin S‐producing and ‐nonproducing strains of Aneurinibacillus migulanus (DSM 5759 and DSM 2895, respectively), the multiple technique sensitively detected an active multidomain NRPS (GrsB) in lysates obtained from the organisms. This functional proteomics method revealed an unknown inactive precursor (or other inactive form) of GrsB in the nonproducing strain. This method provides a new option for the direct detection, functional analysis, and high‐resolution identification of low‐abundance active NRPS enzymes in native proteomic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号