首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Phospholipids with a choline head group are abundant components of all biological membranes, performing critical functions in cellular structure, metabolism, and signaling. In spite of their importance, our ability to visualize choline phospholipids in vivo remains very limited. We present a simple and robust chemical strategy to image choline phospholipids, based on the metabolic incorporation of azidocholine analogues, that accurately reflects the normal biosynthetic incorporation of choline into cellular phospholipids. Azidocholine‐labeled phospholipids can be imaged in cells with high sensitivity and resolution, following derivatization with fluorophores, by bio‐orthogonal chemical reactions compatible with live‐cell imaging. We used this method to visualize the subcellular localization of choline phospholipids. We also demonstrate that double metabolic labeling with azidocholine and propargylcholine allows sensitive two‐color imaging of choline phospholipids. Our method represents a powerful approach to directly image phospholipids, and to study their dynamics in cells and tissues.  相似文献   

2.
The advent of bioorthogonal chemistry has led to the development of powerful chemical tools that enable increasingly ambitious applications. In particular, these tools have made it possible to achieve what is considered to be the holy grail of many researchers involved in chemical biology: to perform unnatural chemical reactions within living organisms. In this minireview, we present an update of bioorthogonal reactions that have been carried out in animals for various applications. We outline the advances made in the understanding of fundamental biological processes, and the development of innovative imaging and therapeutic strategies using bioorthogonal chemistry.  相似文献   

3.
Radiotheranostics are designed by labeling targeting (bio)molecules with radionuclides for diagnostic or therapeutic application. Because the pharmacokinetics of therapeutic compounds play a pivotal role, chemically closely related imaging agents are used to evaluate the overall feasibility of the therapeutic approach. “Theranostic relatives” that utilize different elements are frequently used in clinical practice. However, variations in pharmacokinetics, biodistribution, and target affinity due to different chemical properties of the radioisotopes remain as hurdles to the design of optimized clinical tools. Herein, the design and synthesis of structurally identical compounds, either for diagnostic (18F and a stable metal isotope) or therapeutic application (radiometal and stable 19F), are reported. Such “molecular twins” have been prepared by applying a modular strategy based on click chemistry that enables efficient radiolabeling of compounds containing a metal complex and a tetrazine moiety. This additional bioorthogonal functionality can be used for subsequent radiolabeling of (bio)molecules or pretargeting approaches, which is demonstrated in vitro.  相似文献   

4.
5.
Bioorthogonal chemistry is a rapidly expanding field of research that involves the use of small molecules that can react selectively with biomolecules in living cells and organisms, without causing any harm or interference with native biochemical processes. It has made significant contributions to the field of biology and medicine by enabling selective labeling, imaging, drug targeting, and manipulation of bio-macromolecules in living systems. This approach offers numerous advantages over traditional chemistry-based methods, including high specificity, compatibility with biological systems, and minimal interference with biological processes. In this review, we provide an overview of the recent advancements in bioorthogonal chemistry and their current and potential applications in translational research. We present an update on this innovative chemical approach that has been utilized in cells and living systems during the last five years for biomedical applications. We also highlight the nucleic acid-templated synthesis of small molecules by using bioorthogonal chemistry. Overall, bioorthogonal chemistry provides a powerful toolset for studying and manipulating complex biological systems, and holds great potential for advancing translational research.  相似文献   

6.
Histone acetyltransferases (HATs) are key players in the epigenetic regulation of gene function. The recent discovery of diverse HAT substrates implies a broad spectrum of cellular functions of HATs. Many pathological processes are also intimately associated with the dysregulation of HAT levels and activities. However, detecting the enzymatic activity of HATs has been challenging, and this has significantly impeded drug discovery. To advance the field, we developed a convenient one‐pot, mix‐and‐read strategy that is capable of directly detecting the acylated histone product through a fluorescent readout. The strategy integrates three technological platforms—bioorthogonal HAT substrate labeling, alkyne–azide click chemistry, and quenching FRET—into one system for effective probing of HAT enzyme activity.  相似文献   

7.
Non-enzymatic post-translational modifications (nPTMs) have been proposed as indicators of cellular stresses and diseases. Unfortunately, direct assessment of nPTMs in native environment is extremely challenging due to the heterogeneity of adducts and the lack of tagging tools. Given these challenges, bioorthogonal probes (BPs) have been developed for the analysis of nPTMs. The rationality is that BPs could selectively install azides or alkynes into nPTMs as a biorthogonal handle for the following enrichment or tracking. Herein, we review the state-of-art of BPs used for nPTMs studies, clarify their working principles, and highlight how they advance our understanding of the biological functions of nPTMs.  相似文献   

8.
Polyamines are essential for cell growth and differentiation, but their trafficking by the polyamine transport system is not fully understood. Herein, the synthesis of several azido‐derivatized polyamines for easy conjugation by click chemistry is described. Attachment of a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dye gave fluorescent polyamine probes, which were tested in cell culture. The linear probe series showed superior cellular uptake compared with that of probes in which the dye was attached to a branch on one of the central amines. Interestingly, the linear probes accumulated rapidly in cancer cells (MCF‐7), but not in nontumorigenic cells (MCF‐10A). The fluorescent polyamine probes are therefore applicable to the study of polyamine trafficking, whereas the azido polyamines may be further utilized to transport cargo into cancer cells by exploiting the polyamine transport system.  相似文献   

9.
The mitochondrion is one of the most important organelles in the eukaryotic cell. Characterization of the mitochondrial proteome is a prerequisite for understanding its cellular functions at the molecular level. Here we report a proteomics method based on mitochondrion-targeting groups and click chemistry. In our strategy, three different mitochondrion-targeting moieties were each augmented with a clickable handle and a cysteine-reactive group. Fluorescence-based bioimaging and fractionation experiments clearly showed that most signals arising from the labels were localized in the mitochondria of cells, as a result of covalent attachment between probe and target proteins. The three probes had distinct profiling characteristics. Furthermore, we successfully identified more than two hundred mitochondrial proteins. The results showed that different mitochondrion-targeting groups targeted distinct proteins with partial overlap. Most of the labeled proteins were localized in the mitochondrial matrix and inner mitochondrial membrane. Our results provide a tool for chemoproteomic analysis of mitochondrion-related proteins.  相似文献   

10.
Chemical probes are small‐molecule reagents used by researchers for labelling and detection of biomolecules. We present the design, synthesis, and characterisation of a panel of 11 structurally diverse photoaffinity labelling (PAL) probes as research tools for labelling the model enzyme carbonic anhydrase (CA) in challenging environments, including in protein mixtures and cell lysates. We targeted the ubiquitous CA II as well as the two cancer‐associated CAs (CA IX and CA XII) that are of high priority as potential biomarkers of aggressive and/or multidrug‐resistant cancer. We utilise an atypical biophysical approach, native state mass spectrometry, to monitor the initial protein–probe binding and subsequent UV crosslinking efficiency of the protein:probe complex. This mass spectrometry methodology represents a new approach for chemical probe optimisation and development that might have broader applications to chemical probe characterisation beyond this study. This also represents one of the first studies, to the best of our knowledge, in which a comprehensive set of PAL probes has been used to establish the relationship between probe structure, noncovalent protein–probe binding, and covalent protein–probe crosslinking efficiency. Our results demonstrate the benefits of a comprehensive analysis of chemical probe structure–activity relationships to support the development of optimum chemical probes.  相似文献   

11.
Unnatural amino acids with bioorthogonal reactive groups have the potential to provide a rapid and specific mechanism for covalently inhibiting a protein of interest. Here, we use mutagenesis to insert an unnatural amino acid containing an azide group (Z) into the target protein at positions such that a “click” reaction with an alkyne modulator (X) will alter the function of the protein. This bioorthogonally reactive pair can engender specificity of X for the Z‐containing protein, even if the target is otherwise identical to another protein, allowing for rapid target validation in living cells. We demonstrate our method using inhibition of the Escherichia coli enzyme aminoacyl transferase by both active‐site occlusion and allosteric mechanisms. We have termed this a “clickable magic bullet” strategy, and it should be generally applicable to studying the effects of protein inhibition, within the limits of unnatural amino acid mutagenesis.  相似文献   

12.
Monitoring the release and activation of prodrug formulations provides essential information about the outcome of a therapy. While the prodrug delivery can be confirmed by using different imaging techniques, confirming the release of active payload by using imaging is a challenge. Here, we have discovered that the switchable fluorescence of doxorubicin can validate drug release upon its uncaging reaction with a highly specific chemical partner. We have observed that the conjugation of doxorubicin with a trans-cyclooctene (TCO) diminishes its fluorescence at 595 nm. This quenched fluorescence of the doxorubicin prodrug is recovered upon its bond-cleaving reaction with tetrazine. Clinically assessed iron oxide nanoparticles were used to formulate a doxorubicin nanodrug. The release of doxorubicin from the nanodrug was studied under various experimental conditions. A fivefold increase in doxorubicin fluorescence is observed after complete release. The studies were carried out in vitro in MDA-MB-231 breast cancer cells. An increase in Dox signal was observed upon tetrazine administration. This switchable fluorescence mechanism of Dox could be employed for fundamental studies, that is, the reactivity of various tetrazine and TCO linker types under different experimental conditions. In addition, the system could be instrumental for translational research where the release and activation of doxorubicin prodrug payloads can be monitored by using optical imaging systems.  相似文献   

13.
14.
Folding of newly synthesized proteins in the endoplasmic reticulum is assisted by several families of enzymes. One such family is the protein disulfide isomerases (PDIs). PDIs are oxidoreductases, capable of forming new disulfide bonds or breaking existing ones. Structural information on PDIs unbound and bound to substrates is highly desirable for developing targeted therapeutics, yet it has been difficult to obtain by using traditional approaches because of their relatively large size and remarkable flexibility. Single-molecule FRET (smFRET) could be a powerful tool to study PDIs’ structure and dynamics under conditions relevant to physiology, but its implementation has been hindered by technical challenges of position-specific fluorophore labeling. We have overcome this limitation by site-specifically engineering fluorescent dyes into human PDI, the founding member of the family. Proof-of-concept smFRET measurements of catalytically active PDI demonstrate, for the first time, the feasibility of this approach, expanding the toolkit for structural studies of PDIs.  相似文献   

15.
Trehalose analogues are emerging as valuable tools for investigating Mycobacterium tuberculosis, but progress in this area is slow due to the difficulty in synthesizing these compounds. Here, we report a chemoenzymatic synthesis of trehalose analogues that employs the heat‐stable enzyme trehalose synthase (TreT) from the hyperthermophile Thermoproteus tenax. By using TreT, various trehalose analogues were prepared quickly (1 h) in high yield (up to >99 % by HPLC) in a single step from readily available glucose analogues. To demonstrate the utility of this method in mycobacteria research, we performed a simple “one‐pot metabolic labeling” experiment that accomplished probe synthesis, metabolic labeling, and imaging of M. smegmatis in a single day with only TreT and commercially available materials.  相似文献   

16.
The characterization of aberrant glycosylation patterns in biopsied patient samples represents a remarkable challenge for scientists and medical doctors due to the lack of specific methods for detection. Here, we report the development of a histological method, dubbed CHoMP—chemoenzymatic histology of membrane polysaccharides—for analyzing glycosylation patterns in mammalian tissues. This method exploits a recombinant glycosyltransferase to transfer a monosaccharide analogue equipped with a chemical handle to a specific cell‐surface glycan target, which can then be derivatized with imaging probes by using bioorthogonal click chemistry for visualization. We applied CHoMP to survey changes in expression of N‐acetyllactosamine (LacNAc) in human samples from patients afflicted with lung adenocarcinoma and observed a sharp decrease in expression levels between normal and early grade tumors, thus suggesting a potential application of this technique in early cancer diagnosis.  相似文献   

17.
The poly-ADP-ribose polymerase (PARP) is a protein from the family of ADP-ribosyltransferases that catalyzes polyadenosine diphosphate ribose (ADPR) formation in order to attract the DNA repair machinery to sites of DNA damage. The inhibition of PARP activity by olaparib can cause cell death, which is of clinical relevance in some tumor types. This demonstrates that quantification of PARP activity in the context of living cells is of great importance. In this work, we present the design, synthesis and biological evaluation of photo-activatable affinity probes inspired by the olaparib molecule that are equipped with a diazirine for covalent attachment upon activation by UV light and a ligation handle for the addition of a reporter group of choice. SDS-PAGE, western blotting and label-free LC-MS/MS quantification analysis show that the probes target the PARP-1 protein and are selectively outcompeted by olaparib; this suggests that they bind in the same enzymatic pocket. Proteomics data are available via ProteomeXchange with identifier PXD018661.  相似文献   

18.
19.
20.
The EphB2 receptor is known to be overexpressed in various types of cancer and is therefore a promising target for tumor cell imaging by positron emission tomography (PET). In this regard, imaging could facilitate the early detection of EphB2‐overexpressing tumors, monitoring responses to therapy directed toward EphB2, and thus improvement in patient outcomes. We report the synthesis and evaluation of several fluorine‐18‐labeled peptides containing the SNEW amino acid motif, with high affinity for the EphB2 receptor, for their potential as radiotracers in the non‐invasive imaging of cancer using PET. For the purposes of radiofluorination, EphB2‐antagonistic SNEW peptides were varied at the C terminus by the introduction of L ‐cysteine, and further by alkyne‐ or azide‐modified amino acids. In addition, two novel bifunctional and bioorthogonal labeling building blocks [18F]AFP and [18F]BFP were applied, and their capacity to introduce fluorine‐18 was compared with that of the established building block [18F]FBAM. Copper‐assisted Huisgen 1,3‐dipolar cycloaddition, which belongs to the set of bioorthogonal click chemistry reactions, was used to introduce both novel building blocks into azide‐ or alkyne‐modified SNEW peptides under mild conditions. Finally, the depletion of copper immediately after radiolabeling is a highly important step of this novel methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号