首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxopyronins and corallopyronins are structurally related α‐pyrone antibiotics from myxobacteria. They are thought to represent a highly promising compound class for the development of broad‐spectrum antibacterial therapeutic agents, because of their ability to inhibit RNA polymerase through interaction with the “switch region”, a recently identified novel drug target. Here we describe the identification and characterization of the myxopyronin biosynthetic pathway from Myxococcus fulvus Mx f50. A detailed comparison with the recently identified corallopyronin biosynthetic pathway revealed the genetic and biochemical basis, thus explaining the observed structural differences between the two natural product families. Directed mutagenesis procedures for M. fulvus Mx f50 were developed to enable functional studies and pathway modifications. Our work provided new insights into myxopyronin biosynthesis and led to the production of a novel and unexpected myxopyronin derivative.  相似文献   

2.
MS‐271, produced by Streptomyces sp. M‐271, is a lasso peptide natural product comprising 21 amino acid residues with a d ‐tryptophan at its C terminus. Because lasso peptides are ribosomal peptides, the biosynthesis of MS‐271, especially the mechanism of d ‐Trp introduction, is of great interest. The MS‐271 biosynthetic gene cluster was identified by draft genome sequencing of the MS‐271 producer, and it was revealed that the precursor peptide contains all 21 amino acid residues including the C‐terminal tryptophan. This suggested that the d ‐Trp residue is introduced by epimerization. Genes for modification enzymes such as a macrolactam synthetase (mslC), precursor peptide recognition element (mslB1), cysteine protease (mslB2), disulfide oxidoreductases (mslE, mslF), and a protein of unknown function (mslH) were found in the flanking region of the precursor peptide gene. Although obvious epimerase genes were absent in the cluster, heterologous expression of the putative MS‐271 cluster in Streptomyces lividans showed that it contains all the necessary genes for MS‐271 production including a gene for a new peptide epimerase. Furthermore, a gene‐deletion experiment indicated that MslB1, ‐B2, ‐C and ‐H were indispensable for MS‐271 production and that some interactions of the biosynthetic enzymes were essential for the biosynthesis of MS‐271.  相似文献   

3.
α,β‐Dehydroamino acid derivatives proved to be a novel substrate class for ene‐reductases from the ‘old yellow enzyme’ (OYE) family. Whereas N‐acylamino substituents were tolerated in the α‐position, β‐analogues were generally unreactive. For aspartic acid derivatives, the stereochemical outcome of the bioreduction using OYE3 could be controlled by variation of the N‐acyl protective group to furnish the corresponding (S)‐ or (R)‐amino acid derivatives. This switch of stereopreference was explained by a change in the substrate binding, by exchange of the activating ester group, which was proven by 2H‐labelling experiments.  相似文献   

4.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


5.
A highly enantioselective Michael addition of cyclic 1,3‐dicarbonyl compounds to β,γ‐unsaturated α‐keto esters catalyzed by amino acid‐derived thiourea‐tertiary‐amine catalysts is presented. Using 5 mol% of a novel tyrosine‐derived thiourea catalyst, a series of chiral coumarin derivatives were obtained in excellent yields (up to 99%) and with up to 96% ee under very mild conditions within a short reaction time.  相似文献   

6.
A chemoselective reduction of α‐keto amides to biologically important α‐hydroxy amides (mandelamides) by polymethylhydrosiloxane (PMHS) using 5 mol% potassium phosphate (K3PO4) as catalyst has been developed. This transition metal‐free protocol discloses excellent chemoselectivity for the ketone reduction of α‐keto amides in the presence of other reducible functionalities like ketone, nitro, halides, nitrile and amide. Also, the chemoselectively reduced α‐hydroxy amide has been derivatized to isocyanide‐free Passerini adducts. The N‐alkyl‐α‐hydroxy amides have been successfully converted to 3‐phenyloxindole derivatives by treatment with methanesulfonyl cholride and triethylamine.

  相似文献   


7.
A highly effective aldol cyclization of α‐isothiocyanato imide to both β,γ‐unsaturated α‐keto esters and aryl‐substituted α‐keto esters has been developed. A chiral N,N′‐dioxide–yttrium triflate complex was used as the catalyst. A series of cyclic thiocarbamates bearing chiral quaternary stereocenters was synthesized in good to high yields, excellent diastereo‐ (up to 25:1 dr) and enantioselectivities (up to 99 % ee). In addition, the reaction could be carried out on a gram‐scale, and other functionalized derivatives are also conveniently transformed. Interestingly, a discrepancy of diastereoselection was observed between the reactions of β,γ‐unsaturated α‐keto esters and aryl‐substituted α‐keto esters. Moreover, a substrate dependency of non‐linear effects was observed in this reaction. On the basis of the experimental results and the absolute configuration of the products, possible catalytic models have been proposed to explain the origin of the asymmetric process.

  相似文献   


8.
The highly enantioselective cascade reaction between N‐protected α‐cyanoglycine esters and α,β‐unsaturated aldehydes is disclosed. The reaction represents a one‐step entry to polysubstituted 5‐hydroxyproline derivatives having a quaternary α‐stereocenter generally in high yields with up to >95:5 dr and 99:1 er. It is also a direct catalytic two‐step entry to functionalized α‐quaternary proline derivatives.  相似文献   

9.
A novel copper‐catalyzed oxidative alkylation of α‐amino carbonyl compounds with ethers has been established for the selective synthesis of α‐etherized α‐amino carbonyl compounds. This oxidative alkylation is achieved by dual C(sp3) H bond oxidative cross‐coupling, and its scope is expanded to α‐amino ketones, α‐amino esters and α‐amino amides.

  相似文献   


10.
The highly catalytic asymmetric α‐hydroxylation of β‐indanone esters and β‐indanone amides using peroxide as the oxidant was realized with a new C‐2′ substituted Cinchona alkaloid derivatives. The two enantiomers of α‐hydroxy‐β‐indanone esters could be obtained by simply changing the oxidant. This protocol allows a convenient access to the corresponding α‐hydroxy‐β‐indanone esters and α‐hydroxy‐β‐indanone amides with up to 99% yield and 98% ee.

  相似文献   


11.
An unprecedented organocatalytic enantioselective cascade Michael/hemiketalization/retro‐aldol reaction of 2‐[(E)‐2‐nitrovinyl]phenols and 2,4‐dioxo‐4‐arylbutanoates is described. With a bifunctional squaramide catalyst incorporating (1R,2R)‐1,2‐diphenylethane‐1,2‐diamine, the reactions afford products in 75–99% yields with 80–98% ee. This process provides an enantioselective pathway for the synthesis of chiral α‐keto esters, precursors of 3‐arylproline derivatives, δ‐amino α‐keto acids or cyclic α‐keto lactams.

  相似文献   


12.
The natural antibacterial agent allyl isothiocyanate (AITC) encapsulated in either α‐ or β‐cyclodextrin (CD) has previously been evaluated as a slow‐release additive in polylactide‐co‐polycaprolactone (PLA–PCL) films designed for use in cheese packaging. In the research described in this article, thermogravimetric analysis (TGA) and thermogravimetric analysis in tandem with mass spectrometry (TGA–MS) were used to explore the thermal properties of CD‐encapsulated AITC complexes as well as those of PLA–PCL films containing these complexes. To our knowledge, this is the first reported application of the TGA–MS technique to explore the thermal stability of CD‐entrapped AITC and the first study to report differences in thermal stability of AITC in α‐and β‐CD cavities in the solid state. Observed differences in the thermal degradation profile of films containing the CD complexes can be explained if AITC binds more strongly to β‐CD than to α‐CD. This hypothesis has been reinforced by gas chromatography (GC) and high performance liquid chromatography (HPLC) studies, the results of which suggest that a new covalently bound AITC–CD complex may be formed when incorporating the β‐CD complex of AITC in PLA–PCL films but not when incorporating the α‐CD complex of AITC. This finding means that the α‐CD complex of AITC would be preferred in situations where adequate long‐term controlled release of AITC from polymer films is required, as for example in the case of active packaging applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
A series of novel 4‐arylazo‐3‐methylthiophenes was synthesized by the heterocyclization of 2‐arylhydrazono‐2‐acetyl thioacetanilide derivatives with a variety of α‐halogenated reagents, such as chloroacetone, phenacyl bromide, ethyl chloroacetate, and chloroacetonitrile. The structures of the synthesized thiophene derivatives were confirmed by ultraviolet–visible, IR, and 1H‐NMR spectroscopic techniques and elemental analysis. The synthesized dyes were applied to polyester fabrics as disperse dyes, and their fastness properties were evaluated. The dyed polyester fabrics displayed antibacterial efficacy against Gram‐positive (Staphylococcus aureus) and Gram‐negative (Escherichia coli) bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

15.
A novel and selective method for the simple copper‐catalyzed α‐amination of α‐aminocarbonyl compounds to afford 2‐amino‐2‐iminocarbonyl and 2‐amino‐2‐oxocarbonyl compounds is reported. This transformation is achieved by C(sp3)−H and N−H bond oxidative cross‐coupling and selective C−N bond oxidative cleavage. This reaction system has a broad reaction scope, providing a facile pathway for the α‐functionalization of α‐amino ketones.

  相似文献   


16.
The Lewis base‐organocatalyzed asymmetric hydrosilylation of α‐acetamido‐β‐enamino esters was investigated. Among various chiral Lewis base catalysts, a novel catalyst derived from L ‐serine was found to be the most efficient one which can promote the reaction to afford a series of α,β‐diamino acid derivatives with high yields (up to 99%), excellent enantioselectivities (up to 98% ee) and moderate diastereoselectivities (up to 80:20 dr). The absolute configuration of one of the products was determined by the X‐ray crystallographic analysis. In addition, the mechanism and the transition state of the reaction were proposed.  相似文献   

17.
Various (R)‐ and (S)‐C‐allylglycine derivatives were synthesized by means of an auxiliary controlled diastereoselective aza‐Claisen rearrangement. Starting from (S)‐configured auxiliaries derived from optically active proline, an aza‐Claisen rearrangement enabled us to synthesize α(R)‐configured γ,δ‐unsaturated amides. Since (R)‐allylglycine derivatives could be directly generated by reacting N‐allylproline derivatives and various protected glycine fluorides, the corresponding (S)‐enantiomers were built‐up via an initial α‐chloroacetyl chloride rearrangement and a subsequent chloride azide substitution with complete inversion of the configuration. High diastereoselectivities were obtained (>15 : 1). The auxiliary could be efficiently removed by organolithium reactions of the amides furnishing α‐amino ketones. Another allyllithium addition allowed us to introduce a second allyl chain with high diastereoselectivity. Final ring closures by means of metatheses using Grubbs' (I) catalyst gave raise to the formation of enantiopure phenanthridines and cyclohexenes displaying defined substitution patterns ready for alkaloid total syntheses.  相似文献   

18.
A series of 1,5‐dideoxy‐1,5‐imino‐(l )‐ribitol (DIR) derivatives carrying alkyl or functionalized alkyl groups were prepared and investigated as glycosidase inhibitors. These compounds were designed as simplified 4‐epi‐isofagomine (4‐epi‐IFG) mimics and were expected to behave as selective inhibitors of β‐galactosidases. All compounds were indeed found to be highly selective for β‐galactosidases versus α‐glycosidases, as they generally did not inhibit coffee bean α‐galactosidase or other α‐glycosidases. Some compounds were also found to be inhibitors of almond β‐glucosidase. The N‐alkyl DIR derivatives were only modest inhibitors of bovine β‐galactosidase, with IC50 values in the 30–700 μm range. Likewise, imino‐l ‐ribitol substituted at the C1 position was found to be a weak inhibitor of this enzyme. In contrast, alkyl substitution at C5 resulted in enhanced β‐galactosidase inhibitory activity by a factor of up to 1000, with at least six carbon atoms in the alkyl substituent. Remarkably, the ‘pseudo‐anomeric’ configuration in this series does not appear to play a role. Human lysosomal β‐galactosidase from leukocyte lysate was, however, poorly inhibited by all iminoribitol derivatives tested (IC50 values in the 100 μm range), while 4‐epi‐IFG was a good inhibitor of this enzyme. Two compounds were evaluated as pharmacological chaperones for a GM1‐gangliosidosis cell line (R301Q mutation) and were found to enhance the mutant enzyme activity by factors up to 2.7‐fold.  相似文献   

19.
An efficient system for the direct catalytic intermolecular α‐arylation of acetamide derivatives with aryl bromides and chlorides is presented. The palladium catalyst is supported by Kwong’s indole‐based phosphine ligand and provides monoarylated amides in up to 95% yield. Excellent chemoselectivities (>10:1) in the mono‐ and diarylation with aryl bromides were achieved by careful selection of bases, solvents, and stoichiometry. Under the coupling conditions, the weakly acidic α‐protons of amides (pKa up to 35) were reversibly depotonated by lithium tert‐butoxide (LiO‐t‐Bu), sodium tert‐butoxide (NaO‐t‐Bu) or sodium bis(trimethylsilyl)amide [NaN(SiMe3)2].

  相似文献   


20.
Aristeromycin is a unique carbocyclic nucleoside antibiotic produced by Streptomyces citricolor. In order to elucidate its intriguing carbocyclic formation, we used a genome‐mining approach to identify the responsible enzyme. In silico screening with known cyclitol synthases involved in primary metabolism, such as myo‐inositol‐1‐phosphate synthase (MIPS) and dehydroqunate synthase (DHQS), identified a unique MIPS orthologue (Ari2) encoded in the genome of S. citricolor. Heterologous expression of the gene cluster containing ari2 with a cosmid vector in Streptomyces albus resulted in the production of aristeromycin, thus indicating that the cloned DNA region (37.5 kb) with 33 open reading frames contains its biosynthetic gene cluster. We verified that Ari2 catalyzes the formation of a novel five‐membered cyclitol phosphate from d ‐fructose 6‐phosphate (F6P) with NAD+ as a cofactor. This provides insight into cyclitol phosphate synthase as a member of the MIPS family of enzymes. A biosynthetic pathway to aristeromycin is proposed based on bioinformatics analysis of the gene cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号