共查询到20条相似文献,搜索用时 78 毫秒
1.
文本分类是自然语言处理领域的一个重要研究方向.综合分析发现,文本分类的研究和分析,有助于对信息进行有效的分类和管理,并为自然语言处理的应用提供有力的支持.然而,已有的研究在理论和方法层面虽然已经取得了一定的成就,但是文本分类研究涉及内容、领域和技术等多个方面,各学科研究错综复杂,因此还有很多缺陷和不足,需要进一步进行系统和深入的研究.本文针对文本分类这一研究内容,探讨了文本分类和LDA主题模型的相关理论;然后,从技术、方法和应用三个方面分析了面向LDA主题模型的文本分类的研究现状,总结了目前研究中存在的一些问题和研究策略;最后,归纳出文本分类未来的一些发展趋势. 相似文献
2.
3.
在如今信息数据大爆炸的时代,数据的增长呈现指数级增长,而且其中大部分数据是非结构化数据,这些数据中蕴藏着大量且重要的知识等待着我们用合理的办法将其挖掘出来,如何方便合理快速的进行文本分类也是一个非常重要的课题。LDA模型是一种无监督的模型,它可以发现隐性的主题,为了更有效的发现隐性主题,本文提出一种基于半监督的LDA主题模型,找到一个主题集作为隐性层的知识集,通过这种方法找到的主题与文本更相关,另外,将LDA模型与基于半监督LDA模型应用于文本的特征提取,并与其它特征提取方法比对,实验表明,半监督LDA模型性能略好。 相似文献
4.
《计算机应用与软件》2017,(1)
传统文本情感分类方法通常以词或短语等词汇信息作为文本向量模型特征,造成情感指向不明和隐藏观点遗漏的问题。针对此问题提出一种基于主题角色的文本情感分类方法。该方法首先提取出文本中的潜在评价对象形成评价对象集,评价对象作为情感句描述的主体能够很好地保存文本情感信息;然后使用LDA模型对评价对象集进行主题抽取,将抽取出的主题分裂成"正""负"两种特征项,将这两种特征项记为正负主题角色用于保存文本情感信息;最后,计算主题角色在文本中的情感影响值并建立主题角色模型。实验结果表明,所提方法与传统方法相比可有效提高主观性文本情感分类的准确率。 相似文献
5.
基于LDA模型的主题分析 总被引:9,自引:0,他引:9
在文本分割的基础上, 确定片段主题, 进而总结全文的中心主题, 使文本的主题脉络呈现出来, 主题以词串的形式表示. 为了分析准确, 利用LDA (Latent dirichlet allocation)为语料库及文本建模, 以Clarity度量块间相似性, 并通过局部最小值识别片段边界. 依据词汇的香农信息提取片段主题词, 采取背景词汇聚类及主题词联想的方式将主题词扩充到待分析文本之外, 尝试挖掘隐藏于字词表面之下的文本内涵. 实验表明, 文本分析的结果明显好于其他方法, 可以为下一步文本推理的工作提供有价值的预处理. 相似文献
6.
《计算机应用与软件》2017,(9)
特征稀疏是对传统文本分类的一个巨大的挑战。基于LDA模型,提出一种特征扩展的短文本分类模型。该模型在正文语料的基础上加入标题语料的主题分布,并进行整合,得到每个文本的主题分布。使用SVM分类器进行分类。实验结果表明,与正文语料进行文本分类相比,所提模型对文本分类效果较好。 相似文献
7.
LDA是生成武概率模型,从理论上说,具有其他模型无可比拟的建模优点;SVM分类算法在文本分类上具有独特的优异性能,本文将前者良好的文本表示性能、降维效果与后者强大的分类能力结合起来。实验表明,该方法克服了传统选择方法带来的分类性能受损问题,并且能够在降低数据维度的象件下提高分类的正确率。 相似文献
8.
在社交网络时代,自媒体已成为群众发布、获取信息的重要渠道,网络舆情研判已经成为各级政府部门的主要任务之一。自媒体在反映个人情感和意见思潮的同时,也会汇聚群众的情感共鸣,因此对舆情文本的情感进行分析并获取其主题成为关键。通过爬虫工具对相关舆情文本进行抓取,将获取的数据使用Python的SnowNLP模块进行情感倾向划分,结合无监督的机器学习算法LDA主题模型进行文本关键词聚类,从而确定舆情规模、情感演变规律和舆情的热点主题词,为完善舆情应对机制提供科学支持。 相似文献
9.
10.
针对部分网站中新闻话题没有分类或者分类不清等问题,将LDA模型应用到新闻话题的分类中。首先对新闻数据集进行LDA主题建模,根据贝叶斯标准方法选择最佳主题数,采用Gibbs抽样间接计算出模型参数,得到数据集的主题概率分布;然后根据JS距离计算文档之间的语义相似度,得到相似度矩阵;最后利用增量文本聚类算法对新闻文档聚类,将新闻话题分成若干个不同结构的子话题。实验结果显示表明该方法能有效地实现对新闻话题的划分。 相似文献
11.
通过定义类别聚类密度、类别复杂度以及类别清晰度三个指标,从语料库信息度量的角度研究多种代表性的中文分词方法在隐含概率主题模型LDA下对文本分类性能的影响,定量、定性地分析不同分词方法在网页和学术文献等不同类型文本的语料上进行分类的适用性及影响分类性能的原因。结果表明:三项指标可以有效指明分词方法对语料在分类时产生的影响,Ik Analyzer分词法和ICTCLAS分词法分别受类别复杂度和类别聚类密度的影响较大,二元分词法受三个指标的作用相当,使其对于不同语料具有较好的适应性。对于学术文献类型的语料,使用二元分词法时的分类效果较好,F1值均在80%以上;而网页类型的语料对于各种分词法的适应性更强。本文尝试通过对语料进行信息度量而非单纯的实验来选择提高该语料分类性能的最佳分词方法,以期为网页和学术文献等不同类型的文本在基于LDA模型的分类系统中选择合适的中文分词方法提供参考。 相似文献
12.
从信息论的角度,提出了一种新的文本分类模型.该模型以文本提供的关于类别的信息作为分类依据,从另一个角度来思考文本分类问题.从实用性的角度来看,该模型与传统的朴素贝叶斯模型和基于KL距离的中心向量法具有一定的关系,并给出了证明.根据广义信息论的基本概念,又对此模型进行推广,提出了特征权重的概念,可以通过修正特征权重来修正文本分类模型,为成功解决文本分类模型的修正问题提供了理论基础. 相似文献
13.
14.
15.
针对日渐丰富的跨语言的文字信息资源与新闻报道及科技文献中的多标签数据,为了挖掘跨语言间的相关性及数据属性间的关联性,提出了带标签双语主题模型,应用于跨语言文本分类与标签的推荐。首先,假设科技文献中的关键词与摘要部分有着内容上的相关性,对关键词进行提取,并进行标签化,进而把标签对应于主题模型中的主题,实例化“潜在”的主题;其次,利用带标签双语主题模型对摘要部分进行了训练迭代;最后,对新加入的文档进行跨语言文本分类及标签的推荐。实验结果表明,跨语言文本分类任务中micro-F1达到94.81%,推荐的标签也较好地体现出语义上的相关性。 相似文献
16.
基于N元语言模型的文本分类方法 总被引:6,自引:0,他引:6
分类是近年来自然语言处理领域的一个研究热点。在分析了传统的分类模型后,文中提出了用N元语言模型作为中文文本分类模型。该模型不以传统的"词袋"(bagofwords)方法表示文档,而将文档视为词的随机观察序列。根据该方法,设计并实现一个基于词的2元语言模型分类器。通过N元语言模型与传统分类模型(向量空间模型和NaiveBayes模型)的实验对比,结果表明:N元模型分类器具有更好的分类性能。 相似文献
17.
为了预测商品描述文案中商品特征对点击的影响、量化分析用户的消费行为特征及缓解冷启动问题,建立了一种基于LDA模型和文本情感分析的点击预测模型。该模型基于LDA主题模型对商品描述词的分类筛选对构成词进行情感分析,构建特征向量以表示用户对商品各特征的情感倾向,并通过LightGBM算法进行点击的预测。模型可以将非结构化文本数据转换为结构化数据,量化用户对商品不同特征的兴趣倾向,并利用不同商品的相似特征缓解冷启动问题。实验结果表明,该模型有效提高了点击预测效果并能缓解冷启动问题。 相似文献
18.
社会标注是一种用户对网络资源的大众分类,蕴含了丰富的语义信息,因此将社会标注应用到信息检索技术中有助于提高信息检索的质量。研究了一种基于社会标注的文本分类改进算法以提高网页分类的效果。由于社会标注属于大众分类,标注的产生具有很大的随意性,标注的质量差别很大,因此首先利用文档间的语义相似度以及标注间的语义相似度来对标注的质量进行量化评估。在此基础上对标注进行质量过滤,利用质量相对较好的标注对文档向量空间模型进行扩展,将文档表示成由文档单词以及文档标注信息组成的扩展向量。同时采用支持向量机分类算法进行分类实验。实验结果表明,通过对标注进行质量评估并过滤质量差的标注,同时结合文档内容以及标注来对文档能提高分类的效果,同传统的基于文档内容的分类算法相比,分类结果的F1度量值提高了6.2%。 相似文献
19.
20.
目前,对互联网上虚假健康信息的研究多集中于谣言识别,而对医学信息自动分类的研究较少。采用基于双向编码的语言表征模型和注意力增强的双向长短时记忆模型(BERT-Att-BiLSTM模型),对健康信息文本进行分类,实现自动识别虚假健康信息。实验结果表明,BERT-Att-BiLSTM模型可以高效地对医学信息进行分类,其中BERT模型相较于BiLSTM模型,性能提升明显;与融合Word2Vec的BiLSTM模型相比,BERT-Att-BiLSTM模型效果更佳。 相似文献