首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
本文综述了聚醚醚酮(Polyetheretherketone,PEEK)的特性及其应用,重点探讨了PEEK复合改性中的无机填料填充、纤维增强、聚合物共混及表面改性四个方面对PEEK复合材料性能的影响,简述了PEEK复合材料在航空航天领域、汽车工业及涂料工业中的应用研究进展,并指出PEEK改性过程中纳米材料的团聚以及无机有机物的相容性仍是目前亟待解决的重要问题,寻求更多的增强体和简便复合工艺以实现材料更优性价比是今后的研究重点。  相似文献   

2.
复合改性是进一步提高聚醚醚酮(PEEK)使用性能、扩展其应用领域的重要途径.本文综述了PEEK在热机械性能、摩擦学性能等方面的复合改性研究进展,以及PEEK复合材料在生物假体材料领域、磺化PEEK复合材料在质子交换膜领域的应用研究进展.  相似文献   

3.
采用共沉淀法制备纳米羟基磷灰石(HA),并用硅烷偶联剂KH560对其进行表面改性;然后,以聚醚醚酮(PEEK)为基体,通过热压成型工艺制备原始HA/PEEK与改性HA/PEEK复合材料。考察两种HA的引入对复合材料结构、力学性能和摩擦性能的影响。利用XRD、FTIR、FESEM、拉伸测试、DMA和摩擦测试对两种HA/PEEK复合材料的结构和性能进行了表征。结果表明:HA表面引入了硅烷偶联剂KH560;改性前后HA的晶型结构没有明显改变;两种HA对PEEK基体的结晶结构也没有产生影响;改性HA在PEEK基体中分散均匀;与纯PEEK相比,10wt%改性HA/PEEK复合材料的储能模量增加了55.56%,玻璃化温度增加了3.6℃,磨痕深度降低了31.1%,有效改善了复合材料的热力学性能和摩擦性能;改性HA/PEEK拉伸强度为68.33 MPa,能够满足人骨的强度要求。  相似文献   

4.
聚醚醚酮(Polyetheretherketone,PEEK)优异的耐磨损性能为研发新一代高寿命人工关节提供了新希望。分别综述了采用常规摩擦学方法对纯PEEK、碳纤维增强PEEK、颗粒填充PEEK、等离子改性PEEK等作为人工关节材料,和采用模拟试验机方法对PEEK在人工髋关节、人工膝关节等假体关节面发挥耐磨损性能的应用和研究进展,最后展望了PEEK及其改性的人工关节材料摩擦磨损性能研究的发展趋势。  相似文献   

5.
聚醚醚酮(PEEK)及其复合材料在航空、汽车、医疗等领域具有很大的应用市场。通过增强改性,聚醚醚酮材料力学、热学等性能得到了很好提升,利用熔融挤出机、注塑成型机以及3D打印机等成型装备,将聚醚醚酮及其复合材料制备成不同类型的产品,以适用不同领域的材料需求。从聚醚醚酮的改性方法、制品成型制备以及主要应用领域3个方面,简要介绍了近些年国内外学者的研究工作与研究重点。  相似文献   

6.
聚醚醚酮(PEEK)作为一种特种工程塑料,其涂层具有良好的绝缘性和耐腐蚀性,在腐蚀防护领域具有广阔的前景。阐述了PEEK的性能,重点介绍了PEEK涂层制备方法和改性研究,结合PEEK涂层的应用情况,对其在海洋腐蚀环境下的应用进行了展望。  相似文献   

7.
为满足聚醚醚酮(PEEK)特种封装塑料在特殊环境中应用的高耐热性、高力学性能和透波性能等需求,通过分别将玻璃纤维(GF)和碳化硅纤维(SiC)经熔融共混的方式引入PEEK中,并采用注塑成型的方式制备PEEK复合材料;使用扫描电子显微镜、差示量热扫描仪、万能拉力试验仪、热重分析仪和矢量分析仪对复合材料的拉伸断裂面形貌结构、熔融和结晶行为、力学性能、热稳定性以及电磁屏蔽性能等特性进行了深入研究。结果表明,SiC纤维与PEEK基体具有良好的界面相容性,PEEK/SiC复合材料的力学性能较PEEK/GF复合材料更为优异,其拉伸断裂强度和模量及冲击强度分别可达130.4 MPa,7.39 GPa和14.8 kJ/m2,比纯PEEK分别提高了67%,347%和143%。此外,PEEK/SiC复合材料还表现出优异的热稳定性和良好的透波性能。研究结果说明,小尺寸SiC纤维填充PEEK复合材料具有更优的力学性能、耐热性能和透波性能。为在极端环境中应用的电子封装材料的研究与开发提供了有益的思路。  相似文献   

8.
周欣  罗忠 《化工新型材料》2022,50(2):243-247
聚醚醚酮(PEEK)复合材料在耐高低温、自润滑、机械性能、绝缘屏蔽等方面综合性能优异,对提升水下无人装备战技性能具有重要价值.通过对比分析PEEK、纤维增强树脂基复合材料、特种工程塑料等性能特点,研究了水下无人装备发展技术趋势和新材料需求,结合PEEK复合材料国内外技术发展现状,航空航天、兵器、机械、电气电子等应用现状...  相似文献   

9.
热塑性聚醚醚酮(PEEK)复合材料具有优异的断裂韧性、抗冲击性能、耐疲劳性能,广泛应用于航空航天领域。上浆剂作为碳纤维的核心配套产品,对复合材料界面有重要影响。受分解温度限制,传统热固性碳纤维上浆剂难以满足PEEK复合材料使用,制约高性能PEEK复合材料的研制和应用,因此研制匹配PEEK复合材料的碳纤维上浆剂具有重要意义。本文分析了PEEK复合材料界面特性及上浆剂作用机理;重点介绍了改性PEEK、聚酰亚胺前驱体、聚醚酰亚胺等类型上浆剂的研究进展和成果,并对不同体系上浆剂进行分析总结;最后对PEEK复合材料用碳纤维上浆剂的研制提出建议,对上浆剂绿色环保多功能化趋势进行了展望。  相似文献   

10.
碳纤维织物/PEEK热塑性树脂基复合材料光学反射镜研究   总被引:2,自引:0,他引:2  
李元珍  袁立  纪双英 《材料工程》2006,(6):17-19,66
研究了碳织物增强热塑性PEEK树脂基复合材料的力学性能、部分空间性能及光学反射性能.研究结果表明,碳织物/PEEK复合材料具有优异的力学性能、空间性能、耐辐照性能和光学反射性能;在1×10-3Pa真空中可凝挥发物(CVCM)为0、水气回收量(WVR)为0.08%,并制成φ128mm反射镜,测试了反射镜的反射率为96.89%.碳织物增强热塑性PEEK树脂基复合材料是一种适合空间环境的高性能复合材料,可以用于制作光学反射镜.  相似文献   

11.
The purpose of this study is to provide insight into the microstructural factors that affect the flexural fatigue performance of carbon-fibre-reinforced poly(ether ehter ketone) (PEEK) composites. Specifically, the effect of the degree of crystallinity on the mechanical properties is examined at two crystallinity levels of the as-received composites (35%) and of quenched composites (10%). Higher static flexural strength and modulus as well as longer fatigue life are observed for the higher crystallinity level. By varying the loading angle with respect to the fibre direction it is shown that the crystallinity effect is not matrix dependent alone. Rather, a strong effect is evident in the fibre direction, which is attributed to the influence of the transcrystalline layer formed on the fibre surface in the high-crystallinity material. As a result, the longitudinal fatigue life at 1·7GPa of the 35% crystallinity material is three orders of magnitude higher than that of the 10% crystallinity composite.  相似文献   

12.
《Composites Part A》2002,33(8):1033-1039
Poly(ether ether ketone) nanocomposites containing vapour-grown carbon nanofibres (CNF) were produced using standard polymer processing techniques. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% while matrix ductility was maintained up to 10 wt%. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry showed that an interaction between matrix and the nanoscale filler could occur during processing. Such changes in polymer morphology due to the presence of a nanoscale filler need to be considered when evaluating the mechanical properties of such nanocomposites.  相似文献   

13.
The fatigue behaviour of carbon fibre/PEEK composite is compared with that of carbon/ epoxy material of similar construction, particularly in respect of the effect of hygrothermal conditioning treatments. Laminates of both materials were of 0/90 lay-up, and they were tested in repeated tension at 0° and at 45° to the major fibre axis. The superior toughness of the polyether ether ketone and its better adhesion to the carbon fibres results in composites of substantially greater toughness than that of the carbon/epoxy material, and this is reflected in the fatigue behaviour of the carbon fibre/PEEK. The tougher PEEK matrix inhibits the development of local fibre damage and fatigue crack growth, permitting a 0/90 composite with compliant XAS fibres to perform as well in fatigue as an epoxy laminate with stiffer HTS fibres. Hygrothermal treatments have no effect on the fatigue response of either material in the 0/90 orientation. The fatigue response of a cross-plied carbon/PEEK laminate in the ±45° orientation is much better than that of equivalent carbon/epoxy composites, again because the superior properties of the thermoplastic matrix.  相似文献   

14.
Nano-reinforced fibres were spun from a semicrystalline high-performance poly(ether ether ketone) containing up to 10 wt% vapour-grown carbon nanofibres using conventional polymer processing equipment. Mechanical tensile testing revealed increases in nanocomposite stiffness, yield stress, and fracture strength for both as-spun and heat-treated fibres. X-ray and differential scanning calorimetry analyses were performed in order to investigate both the orientation of nanofibres within the polymer matrix and the matrix morphology. The carbon nanofibres were found to be well aligned with the direction of flow during processing. Significantly, the degree of crystallinity of the poly(ether ether ketone) matrix was found to increase with the initial addition of nanofibres although the crystal structure was not affected. The measured increase in composite tensile modulus is compared to injection-moulded nanocomposite samples made from the same blends. The results highlight the need to characterise the matrix morphology when evaluating nanocomposite performance and hence deducing the intrinsic properties of the nanoscale reinforcement.  相似文献   

15.
We have continued the testing of dimethyl ether as a drift-chamber gas in order to improve the understanding of its properties. In particular, we report on measurement accuracy, on systematic effects, and some preliminary data on the ageing of a detector filled with dimethyl ether.  相似文献   

16.
A novel high performance conductive material with excellent comprehensive properties was prepared by melt-blending, and its performances were adjusted by controlling the selective location of carbon black (CB) in poly(ether ether ketone) (PEEK)/thermoplastic polyimide (TPI) matrix. With increasing the CB loadings, the morphology of PEEK/TPI blends changed from sea-island to co-continuous structure, which was owing to the selective location of CB in TPI phase. Notably, with the selective location of CB in the induced co-continuous PEEK/TPI matrix, the electrical percolation threshold was reduced to 5 wt%, which was significantly lower than that of binary PEEK/CB (9 wt%) and TPI/CB (10 wt%) composites. And the electrical conductivity of ternary PEEK/TPI/CB composites was 104 to 106 times higher than that of binary composites at identical 7.5 wt% CB loading, which was attributed to the double percolation effect. Moreover, the incorporation of CB could improve the thermal and mechanical properties effectively.  相似文献   

17.
The phase behaviour and the mechanical properties of binary blends composed of poly(ether ether ketone) and poly(ether sulphone) have been studied both in the amorphous state and after crystallization of poly(ether ether ketone).Differential scanning calorimetry and dynamical mechanical analysis clearly show the existence of phase separation in the blends. Density measurements confirm the absence of strong interactions between the blend components, as well as the slight effect of PES on the crystallization of PEEK.The mechanical properties of the quenched, amorphous blends remain surprisingly good in spite of the observed immiscibility, however, slowly cooled, crystalline blends appear as brittle materials.  相似文献   

18.
A comprehensive series of experiments is reported on the propagation of cracks in samples of uniaxially aligned continuous carbon-fibre-reinforced poly(ether etherketone) made by laying up preimpregnated tapes. Two different double cantilever beam specimens have been studied involving propagation of cracks parallel to the fibre direction on planes parallel to and perpendicular to the plane of the tapes. Bend tests have also been performed, both quasistatic and under impact loading. The results were analysed using anisotropic linear elastic fracture mechanics and values for the critical stress intensity factor and critical strain energy release rate have been obtained from each type of test with good internal consistency. The importance of toughening mechanisms based on matrix ductility, fibre bridging between fracture surfaces and fibre breakage is discussed quantitatively.  相似文献   

19.
Pristine carbon nanotubes (CNTs) and noncovalently functionalized carbon nanotubes (f-CNTs) were used to prepare poly(ether ether ketone) (PEEK) composites (CNTs/PEEK and f-CNTs/PEEK) via melt blending. Noncovalently functionalized multiwalled nanotubes were synthesized using hydrogen-bonding interactions between sulfonic groups of sulfonated poly(ether ether ketone) (SPEEK) and carboxylic groups of nanotubes treated by acid (CNTs–COOH). The effects of these two kinds of nanotubes on the mechanical properties and crystallization behavior of PEEK were investigated. CNTs improved mechanical properties and promoted the crystallization rate of PEEK as a result of heterogeneous nucleation. Better enhancement of mechanical properties appeared in the f-CNTs/PEEK composites, which is ascribed to the good interaction between f-CNTs and PEEK. However, the strong interaction of f-CNTs and PEEK chains decreased the crystallization rate of PEEK for high content of f-CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号