首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous MAC Packet Transmission (SMPT) has recently been proposed for stabilizing the throughput over wireless links, which is one of the key challenges in providing high-quality wireless multimedia services. SMPT stabilizes the wireless link by transmitting multiple packets on multiple CDMA channels in parallel in response to packet drops due to wireless link errors. These parallel packet transmissions stabilize the link layer throughput, but they also increase the interference level in a given cell of a cellular network or cluster of an ad-hoc network, which in turn reduces the number of traffic flows that can be simultaneously supported in a cell/cluster. We have recently developed an analytical framework for the class of SMPT mechanisms for a simple Bernoulli packet generation process, which does not reflect the oftentimes bursty packet generation processes encountered in real networks. In this paper we develop a generalized analytical framework for SMPT, which accommodates bursty packet traffic (and also non-bursty Bernoulli traffic). This framework expresses the system dynamics in transition probabilities for a Markov chain and calculates the effects of the interference through an iterative approach. The numerical results from our analytical framework and verifying simulations indicate that SMPT provides a significant reduction in packet loss and buffer occupancies (and delay), especially for persistent traffic bursts, in exchange for a reduced number of supported flows. Our analytical framework quantifies these system trade-offs with good accuracy and can thus be employed for resource management.Manjunath Krishnam received the B.E. degree in Electronics and Communications from R.V. College of Engineering, Bangalore University, Bangalore, India, in 1996, the M.S. degree and Ph.D. degree in Electrical Engineering from Arizona State University, Tempe, AZ, in 1999 and 2004 respectively. His research interests are in the areas of network performance analysis, network and traffic modeling, and resource management in wireless networks. Mr. Krishnam is a member of IEEE.Martin Reisslein is an Assistant Professor in the Department of Electrical Engineering at Arizona State University, Tempe. He is affiliated with ASUs Wireless Integrated Nano Technologyy (WINTech) center. He received the Dipl.-Ing. (FH) degree from the Fachhochschule Dieburg, Germany, in 1994, and the M.S.E. degree from the University of Pennsylvania, Philadelphia, in 1996. Both in electrical engineering. He received his Ph.D. in systems engineering from the University of Pennsylvania in 1998. During the academic year 1994–1995 he visited the University of Pennsylvania as a Fulbright scholar. From July 1998 through October 2000 he was a scientist with the German National Research Center for Information Technology (GMD FOKUS), Berlin. While in Berlin he was teaching courses on performance evaluation and computer networking at the Technical University Berlin. He is editor–in–chief of the IEEE Communications Surveys and Tutorials and has served on the Technical Program Committees of IEEE Infocom, IEEE Globecom, and the IEEE International Symposium on Computer and Communications. He has organized sessions at the IEEE Computer Communications Workshop (CCW). He maintains an extensive library of video traces for network performance evaluation, including frame size traces of MPEG–4 and H.263 encoded video, at He is co–recipient of the Best Paper Award of the SPIE Photonics East 2000—Terabit Optical Networking conference. His research interests are in the areas of Internet Quality of Service, video traffic characterization, wireless networking, and optical networking.  相似文献   

2.
Full packet headers consume valuable bitrate, which is especially costly in satellite links and some terrestrial wireless links. This has motivated the compression of packet headers by exploiting their correlation via using finite-state machines. The drawback is that compression in the presence of channel errors (packet loss) may result in error propagation. We offer several designs by adapting error control codes for the requirements of packet header compression in uni-directional and bi-directional links, and explore the tradeoffs in complexity, delay, and system performance. For the bi-directional link, we propose a new design called predictive hybrid ARQ and evaluate its performance. Experiments show significant gains in link-layer throughput as well as improved application layer performance demonstrated via video transfer experiments.  相似文献   

3.
In a wireless network packet losses can be caused not only by network congestion but also by unreliable error-prone wireless links. Therefore, flow control schemes which use packet loss as a congestion measure cannot be directly applicable to a wireless network because there is no way to distinguish congestion losses from wireless losses. In this paper, we extend the so-called TCP-friendly flow control scheme, which was originally developed for the flow control of multimedia flows in a wired IP network environment, to a wireless environment. The main idea behind our scheme is that by using explicit congestion notification (ECN) marking in conjunction with random early detection (RED) queue management scheme intelligently, it is possible that not only the degree of network congestion is notified to multimedia sources explicitly in the form of ECN-marked packet probability but also wireless losses are hidden from multimedia sources. We calculate TCP-friendly rate based on ECN-marked packet probability instead of packet loss probability, thereby effectively eliminating the effect of wireless losses in flow control and thus preventing throughput degradation of multimedia flows travelling through wireless links. In addition, we refine the well-known TCP throughput model which establishes TCP-friendliness of multimedia flows in a way that the refined model provides more accurate throughput estimate of a TCP flow particularly when the number of TCP flows sharing a bottleneck link increases. Through extensive simulations, we show that the proposed scheme indeed improves the quality of the delivered video significantly while maintaining TCP-friendliness in a wireless environment for the case of wireless MPEG-4 video.  相似文献   

4.
A novel hybrid ARQ (HARQ) scheme using a concatenated two-state trellis-coded modulation (CT-TCM) code is proposed for improving wireless TCP throughput. A distinguished feature of the proposed scheme is that the heavily punctured TCM codes are used for retransmissions of the corrupted data block, which are combined at the receiver with the previously received sequences of the same data block for decoding. By this method, significantly improved coding gain and efficient spectrum utilization can be achieved with very low complexity. A Markov model is developed to evaluate TCP throughput over the proposed HARQ in wireless link. By both analysis and simulation, we demonstrate that compared with other existing TCM-based ARQ schemes, significant improvement of TCP throughput over wireless links is achieved by the proposed CT-TCM HARQ while smaller buffer size is required at the access point.  相似文献   

5.
The impact of multihop wireless channel on TCP performance   总被引:6,自引:0,他引:6  
This paper studies TCP performance in a stationary multihop wireless network using IEEE 802.11 for channel access control. We first show that, given a specific network topology and flow patterns, there exists an optimal window size W* at which TCP achieves the highest throughput via maximum spatial reuse of the shared wireless channel. However, TCP grows its window size much larger than W* leading to throughput reduction. We then explain the TCP throughput decrease using our observations and analysis of the packet loss in an overloaded multihop wireless network. We find out that the network overload is typically first signified by packet drops due to wireless link-layer contention, rather than buffer overflow-induced losses observed in the wired Internet. As the offered load increases, the probability of packet drops due to link contention also increases, and eventually saturates. Unfortunately the link-layer drop probability is insufficient to keep the TCP window size around W'*. We model and analyze the link contention behavior, based on which we propose link RED that fine-tunes the link-layer packet dropping probability to stabilize the TCP window size around W*. We further devise adaptive pacing to better coordinate channel access along the packet forwarding path. Our simulations demonstrate 5 to 30 percent improvement of TCP throughput using the proposed two techniques.  相似文献   

6.
This paper considers the problem of supporting TCP, the Internet data transport protocol, over a lossy wireless link whose quality varies over time. In order to prevent throughput degradation, it is necessary to “hide” the losses and the time variations of the wireless link from TCP. A number of solutions to this problem have been proposed in previous studies, but their performance was studied on a purely experimental basis. This paper presents an approximate analysis, validated by computer simulations, for TCP performance over wireless links. The analysis provides the basis for a systematic approach to supporting TCP over wireless links. The specific case of a Rayleigh-faded wireless link and automatic repeat request-based link-layer recovery is considered for the purpose of illustration. The numerical results presented for this case show that a simple solution, that of using an appropriately designed link-layer error-recovery scheme, prevents excessive deterioration of TCP throughput on wireless links  相似文献   

7.
Video streaming is expected to account for a large portion of the traffic in future networks, including wireless networks. It is widely accepted that the user datagram protocol (UDP) is the preferred transport protocol for video streaming and that the transmission control protocol (TCP) is unsuitable for streaming. The widespread use of UDP, however, has a number of drawbacks, such as unfairness and possible congestion collapse, which are avoided by TCP. In this paper we investigate the use of TCP as the transport layer protocol for streaming video in a multi‐code CDMA cellular wireless system. Our approach is to stabilize the TCP throughput over the wireless links by employing a recently developed simultaneous MAC packet transmission (SMPT) approach at the link layer. We study the capacity, i.e. the number of customers per cell, and the quality of service for streaming video in the uplink direction. Our extensive simulations indicate that streaming over TCP in conjunction with SMPT gives good performance for video encoded in a closed loop, i.e. with rate control. We have also found that TCP is unsuitable (even in conjunction with SMPT) for streaming the more variable open‐loop encoded video. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
一种无线网络中基于ARQ的拥塞控制方法   总被引:1,自引:0,他引:1  
李昕  刘文予 《电讯技术》2006,46(2):52-56
提出了一种适用于无线网络的基于多拒绝自动请求重传(ARQ)算法的拥塞控制方法。谊方法结合随机早探洲(RED)算法,通过ARQ发送窗口和分割队列长度以及重传率进行拥塞控制。仿真表明,这种方法能预测链路拥塞,反馈链路拥塞程度,提高链路吞吐率。  相似文献   

9.
Providing reliable data communications over wireless channels is a challenging task because time-varying wireless channel characteristics often lead to bit errors. These errors result in loss of IP packets and, consequently, TCP segments encapsulated into these packets. Since TCP cannot distinguish packet losses due to bit corruption from those due to network congestion, any packet loss caused by wireless channel impairments leads to unnecessary execution of the TCP congestion control algorithms and, hence, sub-optimal performance. Automatic Repeat reQuest (ARQ) and Forward Error Correction (FEC) try to improve communication reliability and reduce packet losses by detecting and recovering corrupted bits. Most analytical models that studied the effect of ARQ and FEC on TCP performance assumed that the ARQ scheme is perfectly persistent (i.e., completely reliable), thus a frame is always successfully transmitted irrespective of the number of transmission attempts it takes. In this paper, we develop an analytical cross-layer model for a TCP connection running over a wireless channel with a semi-reliable ARQ scheme, where the amount of transmission attempts is limited by some number. The model allows to evaluate the joint effect of stochastic properties of the wireless channel characteristics and various implementation-specific parameters on TCP performance, which makes it suitable for performance optimization studies. The input parameters include the bit error rate, the value of the normalized autocorrelation function of bit error observations at lag 1, the strength of the FEC code, the persistency of ARQ, the size of protocol data units at different layers, the raw data rate of the wireless channel, and the bottleneck link buffer size.  相似文献   

10.
Backoff algorithms are typically employed in multiple-access networks (e.g., Ethernet) to recover from packet collisions. We propose and carry out the analysis for three types of link-layer backoff schemes, namely linear backoff, exponential backoff, and geometric backoff, on point-to-point wireless fading links where packet errors occur non-independently. In such a scenario, the backoff schemes are shown to achieve better energy efficiency without compromising much on the link layer throughput performance.  相似文献   

11.
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communi-cating nodes. In this paper, we present a state-based channel capacity perception scheme to provide sta-tistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wire-less multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capaci-ty, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a net-work resource and forwards the data packet by tak-ing into consideration the channel capacity deploy-ments in multi-terminal or multi-hop mesh net-works. Extensive computer simulations demonstrate that the proposed scheme can achieve better per-formance in terms of packet delivery ratio and net-work throughput compared to the existing capacity prediction schemes.  相似文献   

12.
Joe  Inwhee 《Wireless Networks》2000,6(3):211-219
This paper describes the design and performance of a novel adaptive hybrid ARQ scheme using concatenated FEC codes for error control over wireless ATM networks. The wireless links are characterized by higher, time‐varying error rates and burstier error patterns in comparison with the fiber‐based links for which ATM was designed. The purpose of the hybrid ARQ scheme is to provide a capability to dynamically support reliable ATM‐based transport over wireless channels by using a combination of our ARQ scheme (called SDLP) and the concatenated FEC scheme. The key ideas in the proposed hybrid ARQ scheme are to adapt the code rate to the channel conditions using incremental redundancy and to increase the starting code rate as much as possible with the concatenated FEC, maximizing the throughput efficiency. The numerical results show that our proposed scheme outperforms other ARQ schemes for all SNR values. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
TCP does not perform well in a connection that includes a lossy wireless link. Techniques intended to improve the performance of TCP for such connections can be grouped into three categories: end-to-end, link layer and split-connection approaches. Some simulations and experimental results indicate that split-connection protocols yield better performance than the other two approaches. Although analytical modeling of the end-to-end and link-layer approaches has been presented, no comparable performance analysis for split-connection protocols has been reported previously. In this paper, a stochastic model is developed and used to analyze the performance of a class of split-connection protocols which deploy TCP on the wire-line network and a light-weight transport protocol on the wireless final hop. The final hop is provided by a digital TDMA cellular system. The condition of heavy source traffic to the wireless terminal is considered. The model relates the throughput and some useful auxiliary performance measures to key system parameters such as propagation delays, the base-station buffer size, the ARQ protocol and channel-error process of the wireless link. The usefulness of the analysis is illustrated by its application to the problem of sizing the TCP receiving buffer in a base station.  相似文献   

14.
We treat the throughput analyses of parallel ARQ schemes over correlated MIMO channels with adaptive modulation and coding (AMC). To describe the packet transmission over multiple parallel logic channels, we extend the existing burst- error model for single channel to multiple parallel logic channels. Based on such a packet error model, we derive the throughput of different parallel ARQ protocols. Moreover, to describe the temporally correlated physical channel fading, we generalize the existing Markov model for single channel to multiple parallel channels for MIMO systems. Then we develop a method for calculating the packet-level model parameters from the parameters of the physical-layer model and the MIMO transceiver. Using the above hierarchical throughput analysis framework, we investigate the potential throughput gain or throughput loss of parallel ARQ over the conventional serial ARQ in MIMO systems. Our results reveal that as SNR increases, parallel ARQ can achieve higher throughput gain or less throughput loss compared to serial ARQ; parallel SW can achieve throughput gain in most of the MIMO scenarios but increasing the number of antennas does not always bring higher gain; parallel GBN with large number of antennas and independent buffers can achieve throughput gain; parallel SR incurs throughput loss.  相似文献   

15.
Multiple-input multiple-output (MIMO) wireless communication systems that employ multiple transmit and receive antennas can provide very high-rate data transmissions without increase in bandwidth or transmit power. For this reason, MIMO technologies are considered as a key ingredient in the next generation wireless systems, where provision of reliable data services for TCP/IP applications such as wireless multimedia or Internet is of extreme importance. However, while the performance of TCP has been extensively studied over different wireless links, little attention has been paid to the impact of MIMO systems on TCP. This paper provides an investigation on the performance of modern TCP systems when used over wireless channels that employ MIMO technologies. In particular, we focus on two representative categories of MIMO systems, namely, the BLAST systems and the space-time block coding (STBC) systems, and how the ARQ and packet combining techniques impact on the overall TCP performance. We show that, from the TCP throughput standpoint, a more reliable channel may be preferred over a higher spectral efficient but less reliable channel, especially under low SNR conditions. We also study the effect of antenna correlation on the TCP throughput under various conditions.  相似文献   

16.
Next-generation wireless Internet (NGWI) is expected to provide a wide range of services including real-time multimedia to mobile users. However, the real-time multimedia traffic transport requires rate control deployment to protect shared Internet from unfairness and further congestion collapse. The transmission rate control method must also achieve high throughput and satisfy multimedia requirements such as delay or jitter bound. However, the existing solutions are mostly for the wired Internet, and hence, they do not address the challenges in the wireless environments which are characterized by high bit error rates. In this paper, a new analytical rate control (ARC) protocol for real-time multimedia traffic over wireless networks is presented. It is intended to achieve high throughput and multimedia support for real-time traffic flows while preserving fairness to the TCP sources sharing the same wired link resources. Based on the end-to-end path model, the desired behavior of a TCP source over lossy links is captured via renewal theory. The resulting asymptotic throughput equation is designated as the driving equation for the proposed rate control method. Performance evaluation via simulation experiments reveals that ARC achieves high throughput and meets multimedia traffic expectations without violating good citizenship rules for the shared Internet.  相似文献   

17.
The microcellular link performance of future multimedia wireless systems could he improved by using error-correcting punctured convolutional codes in conjunction with slow-frequency hopping. However, the bandwidth expansion due to coding leads to a decrease in the signal-to-interference ratio (SIR) of a frequency-division time-division multiple-access (FD-TDMA) cellular radio link if the system capacity is to be maintained for a given bandwidth allocation. This work determines the best compromise between the power of error correction due to coding and the strength of the self-induced system interference in terms of numerous criteria for speech and data transmission. The aforementioned tradeoff is evaluated in terms of the average bit error rate (BER), the frame error rate, and the burst error distribution for voice transmission. For data transmission with a type 1 hybrid selective-repeat automatic repeat-request (ARQ) protocol, the criteria are average throughput and throughput distribution, the round-trip acknowledgment transmission delay distribution, and the buffering requirements at the transmitter and receiver. The study highlights that punctured codes can significantly improve performance for wireless data links in comparison with the rate 1/2 convolutional coding case or the no-coding case  相似文献   

18.
The authors present and analyze an efficient partial retransmission automatic repeat request (ARQ) strategy using convolutional coding and sequential decoding in conjunction with code combining. In the proposed ARQ scheme, whenever a packet of data needs to be retransmitted that packet is not repeated entirely as in the case of conventional full retransmission ARQ strategies. Instead, symbols of that packet are repeated a few at a time, sequentially, as needed, hence making a more effective use of the channel. It is shown that partial repetitions and code combining still yields an increase of the apparent Pareto exponent of sequential decoding, as in the case of full repetition-code combining. A throughput analysis shows that the partial retransmission ARQ strategy yields a substantial throughput improvement over the full retransmission-code combining ARQ strategies  相似文献   

19.
Providing quality-of-service (QoS) guarantees over wireless packet networks poses a host of technical challenges that are not present in wireline networks. One of the key issues is how to account for the characteristics of the time-varying wireless channel and for the impact of link-layer error control in the provisioning of packet-level QoS. We accommodate both aspects in analyzing the packet-loss performance over a wireless link. We consider the cases of a single and multiplexed traffic streams. The link capacity fluctuates according to a fluid version of Gilbert-Elliott channel model. Traffic sources are modeled as on-off fluid processes. For the single-stream case, we derive the exact packet-loss rate (PLR) due to buffer overflow at the sender side of the wireless link. We also obtain a closed-form approximation for the corresponding wireless effective bandwidth. In the case of multiplexed streams, we obtain a good approximation for the PLR using the Chernoff-dominant eigenvalue (CDE) approach. Our analysis is then used to study the optimal forward error correction code rate that guarantees a given PLR while minimizing the allocated bandwidth. Numerical results and simulations are used to verify the adequacy of our analysis and to study the impact of error control on the allocation of bandwidth for guaranteed packet-loss performance  相似文献   

20.
赵海涛  董育宁  张晖  李洋 《信号处理》2010,26(11):1747-1755
本文针对如何改善无线多跳Mesh网络的服务质量,满足无线多媒体业务对数据传输的带宽、时延、抖动的要求等问题,研究了一种基于无线信道状态和链路质量统计的MAC层最大重传次数的自适应调整算法。该算法通过对无线Mesh网络的无线信道环境的动态感知,利用分层判断法区分无线分组丢失的主要原因是无线差错还是网络拥塞导致,实时调整MAC层的最佳重传次数,降低无线网络中的分组冲突概率。基于链路状态信息的统计和最大重传策略,提出了一种启发式的基于环境感知的QoS路由优化机制HEAOR。该算法通过动态感知底层链路状态信息,利用灰色关联分析法自适应选择最优路径,在不增加系统复杂度的基础上,减少链路误判概率,提高传输效率。NS2仿真结果表明,HEAOR算法能有效减少重路由次数,降低链路失效概率,提高网络的平均吞吐率。本文提出的方法不仅能够优化MAC层的重传,而且通过发现跨层设计的优化参数实现对路径的优化选择。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号