首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
通过原位聚合制备了聚丙烯酸丁酯(PBA)改性蒙脱土(MMT),与聚丙烯(PP)熔融复合制成P/MMT纳米复合材料,系统地研究了复合材料的熔融、结品行为和力学性能。结果表明:随着处理MMT的BA用量的增加,PP/MMT纳米复合材料中PP相的结晶度、熔点和结晶温度明显提高,结晶速度加快;复合材料的拉伸强度变化不大,但拉伸横量和冲击强度有显著提高。当BA/0MMT质量比为1/12左右时,复合材料的韧性趋于平衡值,而拉伸横量出现最大值。  相似文献   

2.
剑麻纤维与晶须混杂增强聚丙烯复合材料   总被引:7,自引:0,他引:7  
采用熔融共混和注塑成型方法制得了剑麻短纤维(SF)和CaSO4晶须混杂增强聚丙烯(PP)复合材料,研究了复合材料的热性能、微观结构和力学性能。结果表明,晶须提高了复合材料的热稳定性,阻碍了PP的结晶,降低了复合材料中PP相的结晶度和结晶速率;SF和晶须提高了复合材料的模量和韧性,但由于混杂增强复合材料弱界面键合的制约,晶须的高强性能并没有在复合材料中充分表现出来。  相似文献   

3.
聚丙烯/碱处理剑麻纤维复合材料的结构与性能   总被引:4,自引:0,他引:4  
用注射成型的方法制备了聚丙烯(PP)/碱处理剑麻纤维(SF)复合材料,研究了材料的热性能、晶态结构、微观结构和力学性能。结果表明,碱处理SF对复合材料的热稳定性影响较小,但提高了PP相的结晶速率和结晶度,诱导了卢晶型PP的生成,提高了复合材料的弹性模量,对PP有显著的增韧效果;但弱的界面键合降低了复合材料的拉伸强度。  相似文献   

4.
聚丙烯/滑石粉复合材料的等温结晶动力学   总被引:9,自引:0,他引:9  
用差示扫描量热法(DSC)研究聚丙烯(PP)及PP/滑石粉复合材料的等温结晶过程。用Avrami方程全面分析PP/滑石粉的等温结晶动力学,并由此获得相关的动力学参数;用Kissinger方程研究滑石粉对PP/滑石粉复合材料结晶活化能的影响。研究表明:加入滑石粉后明显提高PP/滑石粉复合材料的结晶速率和结晶度;证明滑石粉能促进PP材料的结晶,并在PP结晶过程中起到异相成核作用。PP/滑石粉复合材料的等温结晶过程属于典型的异相成核机理。  相似文献   

5.
通过熔融共混制备了丙烯酸丁酯(BA)原位聚合改性滑石粉/聚丙烯(PP)复合材料。研究了原位聚合改性对滑石粉/PP复合材料形貌、晶型结构、结晶熔融行为和力学性能的影响。结果表明,PP和滑石粉在熔融共混过程中,剪切力的作用使层叠的滑石粉剥离成不同厚度的片层,BA原位聚合改性改善了滑石粉与PP之间的界面粘结,有利于滑石粉在PP基体中的剥离;滑石粉的原位聚合改性,促进了β-晶型PP的生成,提高了滑石粉/PP复合材料中PP相的熔点、结晶速率和结晶度,降低了PP相的结晶温度。同时显著提高了滑石粉/PP复合材料的冲击强度,且存在一最佳的BA用量。  相似文献   

6.
聚丙烯/蒙脱土纳米复合材料的结晶性能研究   总被引:2,自引:1,他引:2  
宋军  王宝辉  丁伟  倪卓 《塑料工业》2005,33(6):48-50
采用差示扫描量热法研究蒙脱土(MMT)对聚丙烯(PP)等温结晶性能的影响。结果表明:加入MMT后提高了PP的结晶速率,使结晶度增大,但对PP熔点的影响不大;加入相容剂PP-g-MAH后,使有机MMT对PP的成核作用更加明显,从而提高了PP/MMT。纳米复合材料的结晶度;PP/MMT纳米复合材料的n值在3左右,其成核方式是异相成核方式。  相似文献   

7.
利用TGA、DSC和RAD-3型高级应变控制流变仪对原位反应增容技术制备的聚丙烯/蒙脱土(PP/MMT)复合材料的熔融与结晶行为、热稳定性能和流变性能进行了系统的研究。热分析结果表明,PP/MMT复合材料的熔融热焓显著降低,结晶度明显提高,在整个热分解温度范围内的耐热稳定性比纯PP差,说明MMT可显著提高该复合材料的阻燃特性,在PP的结晶过程中起到异相成核作用。流变行为的结果表明,PR/MMT复合材料为假塑性熔体,加工行为与PP相似,其储存模量、损耗模量、表观粘度和扭矩等流变参数随MMT的加入显著降低,表明MMT的加入不会损害:PP/MMT复合材料的加工流动性,反而可改善其加工性能。  相似文献   

8.
综述了3类聚丙烯(PP)基复合材料体系包括PP/无机物体系、PP/有机物体系和PP/聚合物体系的结晶行为。阐述了PP基体的结晶结构以及结晶动力学特征,包括添加物对PP的结晶温度、结晶速率及结晶度等的影响;分析了结晶行为对复合材料力学性能的影响。复合材料界面对基体聚合物取向结晶形态及结晶行为的影响等还需进一步研究。  相似文献   

9.
制备了聚丙烯(PP)/海泡石复合材料,考察了海泡石对复合材料熔融性能、结晶性能、力学性能及热变形温度的影响。结果表明:海泡石的加入提高了PP的结晶温度,降低了PP的熔点和结晶度;海泡石对PP的拉伸强度和冲击强度影响不大;海泡石的加入明显提高了PP的热变形温度。  相似文献   

10.
采用熔融共混法制备了聚丙烯(PP)和两种牌号的高性能热塑性弹性体HYBRAR的共混物。通过观察共混物的结晶形态,研究共混物结晶性能以及测试共混物的透光率,结果表明:加入HYBRAR后,PP的主要晶型(α晶)不变,结晶温度升高,同时结晶尺寸变小,结晶度显著提高;PP/HYBRAR7125共混体系的结晶速率呈现不规律变化,而PP/HYBRAR7311体系则先降低再升高;加入HYBRAR后,PP的透光率明显提高。  相似文献   

11.
热致性液晶与聚丙烯原位复合材料的相容性研究   总被引:2,自引:0,他引:2  
在热致液晶共聚酯(LCP)与聚丙烯(PP)的共混体系中引入相容剂(接枝共聚物MAH—g-PP),借助热台偏光显微镜、扫描电镜、差示扫描量热仪、流变仪等方法研究了相容剂对PP/LCP原位复合材料的微观结构和界面性能、结晶行为、流变行为以及力学性能的影响.结果表明:添加相容剂后,基体中的LCP微纤分散更均匀,LCP微纤长径比L/D增大.PP和LCP两相之间有较好的粘连,促进了共混体的结晶,改善了PP/LCP原位复合材料的力学性能.  相似文献   

12.
A fumed hydrophilic nano‐silica‐filled polypropylene (PP) composite was blended with a liquid‐crystalline polymer (LCP; Rodrun LC5000). The preblended polymer blend was extruded through a capillary die; this was followed by a series of rheological and morphological characterizations. The viscosity of the PP matrix increased with the addition of the hydrophilic nano‐silica. At shear rates between 50 and 200 s?1, the composite displays marked shear‐thinning characteristics. However, the incorporation of LC5000 in the PP composite eliminated the shear‐thinning characteristic, which suggests that LC5000 destroyed the agglomerated nano‐silica network in the PP matrix. Although the viscosity ratio of LCP/PP was reduced after the addition of nano‐silica fillers, the LCP phases existed as droplets and ellipsoids. The nano‐silicas were concentrated in the LC5000 phase, which hindered the formation of LCP fibers when processed at high shear deformation. We carried out surface modification of the hydrophilic nano‐silica to investigate the effect of modified nano‐silica (M‐silica) on the morphology of the PP/LC5000 blend system. Ethanol was successfully grafted onto the nano‐silica surface with a controlled grafting ratio. The viscosity was reduced for PP filled with ethanol‐M‐silica when compared to the system filled with untreated hydrophilic nano‐silica. The LC5000 in the (PP/M‐silica)/LC5000 blend existed mainly in the form of fibrils. At high shear rates (e.g., 3000 s?1), the LC5000 fibril network was formed at the skin region of the extrudates. The exclusion of nano‐silica in the LC5000 phase and the increased viscosity of the matrix were responsible for the morphological changes of the LCP phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1484–1492, 2003  相似文献   

13.
Polypropylene (PP) was melt‐blended in a single‐screw extruder with a thermotropic Vectra B‐950 liquid crystalline polymer (LCP) in different proportions. The mechanical properties of such blends were compared in respect of their Young's moduli, ultimate tensile strength (UTS), percent elongation at break, and toughness to those of pure PP. The thermal properties of these blends were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology was studied by using a polarizing light microscope (PLM) and a scanning electron microscope (SEM) while the rheological aspects of the blends and the pure PP were studied by a Haake Rheowin equipment. Mechanical analysis (tensile properties) of the blends showed pronounced improvement in the moduli and the UTS of the PP matrix in the presence of 2–10% of LCP incorporation. TGA of all the blends showed an increase in the thermal stability for all the blends with respect to the matrix polymer PP, even at a temperature of 410°C, while PP itself undergoes drastic degradation at this temperature. DSC studies indicated an increase in the softening range of the blends over that of PP. Morphological studies showed limited mixing and elongated fibril formation by the dispersed LCP phase within the base matrix (PP) at the lower ranges of LCP incorporation while exhibiting a tendency to undergo gross phase separation at higher concentrations of LCP, which forms mostly agglomerated fibrils and large droplets. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 767–774, 2003  相似文献   

14.
A novel concept of improving shear‐induced fibrillation of liquid crystalline polymer (LCP) in LCP/thermoplastic blend systems was introduced. Silica fillers (SiO2) were added to an LCP/polypropylene (PP) system to serve as a viscosity thickening agent and to improve the fibrillation of the LCP phase. The formation of LCP fibrils was found to enhance with the incorporation of 5–15 wt % of fillers. The presence of LCP fibrils improved the flow properties of the LCP/PP/SiO2 composites. It was evident from the rheological and morphological studies that the addition of silica led to an increase of the aspect ratio of the LCP fibrils, which, in turn, should improve their effectiveness as reinforcements and/or toughening agents. Substantial improvement in LCP aspect ratio was achieved by the introduction of hydrophobic SiO2 fillers in the PP/LCP blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2070–2078, 2002  相似文献   

15.
《Polymer》1997,38(22):5557-5564
The mechanical properties of self-reinforced liquid crystalline polymer/polypropylene (LCP/PP) blends strongly depend on the viscosity ratio of the blend components in the melt. This ratio was determined for PP blends with different commercial LCPs (Vectra A950 and Vectra B950), by means of capillary rheometry, under conditions representative for the blending process during extrusion. It was found that optimal mechanical properties were achieved when the LCP/PP viscosity ratio at 285°C ranges between 2 and 4 at a shear rate of 800–1000s−1. The LCP/PP viscosity ratio appears to be shear stress dependent. This creates the option of fine tuning the LCP droplet deformation process by means of the extrusion rate. This shear stress dependence is more pronounced for PP blends with Vectra B950 than for blends with Vectra A950.  相似文献   

16.
When silica (SiO2) fillers were introduced into the polypropylene (PP) and liquid‐crystalline polymer (LCP) blend, it was found that the mixing sequence, the filler size, and the filler surface nature affected the rheology of the composites and the morphology of the LCP phase in the ternary composite. In particular, the compatibility between the filler and the PP matrix was found to exert a strong influence on the droplet‐fibril transition. The incorporation of the hydrophobic silica to the LCP/PP blend facilitated the fibrillation of LCP because the hydrophobic filler demonstrated affinity towards the hydrophobic PP matrix. The preferential residence of the hydrophobic silica in the PP phase would minimise the LCP domain disruption leading to the formation of LCP fibrils with high aspect ratios. The use of fine filler and in situ blending, which promoted the filler–LCP interaction, could prevent coalescence, inhibit deformation and hinder fibril development as well. © 2003 Society of Chemical Industry  相似文献   

17.
Four isotropic polymers, poly(butylene terephthalate) (PBT), polycarbonate (PC), polyethersulfone (PES) and polysulfone (PSU), were blended by extrusion with a thermotropic liquid crystalline polymer (LCP) at different temperatures. The morphology of extrudates was observed by means of scanning electron microscopy and the intrinsic aspect ratio of LCP fibrils and particles separated from matrix resin was measured with an image analysis. Special attention was paid to the LCP fibrillation in these four matrices in a wide temperature range from 270 to 360°C and the internal relations among the effects of processing parameters, such as viscosity ratio, extrusion temperature, and LCP concentration. The results show that the viscosity ratio of the dispersed LCP phase to the continuous phase is a decisive factor determining the formation of LCP fibrils, but its effect closely relates with the LCP content. In the range of viscosity ratios investigated, 0.004 to 6.9, and lower LCP content of 10%, significant fibrillation took place only at viscosity ratios below 0.01. It is predicted that the upper limit of the viscosity ratio for LCP fibrillation will increase with increasing LCP content. A comparison of the morphologies of LCP/PES blends with different LCP concentrations reveals that the LCP phase becomes continuous at a concentration of less than 50%, and high LCP content does not always favor the formation of long and uniform LCP fibrils. The extrusion temperature has a marked effect on the size of the minor LCP domains. For fibril forming systems, the percentage of LCP fibrils with larger aspect ratios increases with increasing extrusion temperatures. All these results are explained by the combined role of deformation and coalescence of the LCP disperesed phase in the blend.  相似文献   

18.
Studies were conducted on the effects of shear rate, viscosity ratio and liquid crystalline polymer (LCP) content on the morphological and mechanical properties of polycarbonate (PC) and LCP blends. The LCP (LC5000) used was a thermotropic liquid crystalline polymer consisting of 80/20 of parahydroxybenzoic acid and poly(ethylene terephthalate) (PHB/PET). The viscosity ratio (viscosity of LCP: viscosity of matrix) was varied by using two processing temperatures. Due to the different sensitivity of materials to temperature, variation in the processing temperature will lead to varying viscosity of the components in the blends. Based on this principle, the processing temperature could be manipulated to provide a favourable viscosity ratio of below unity for fibre formation. To study the effect of shear rate, the flow rate of the blend and the mould thickness were varied. The shear rate has a significant effect on the fibrillation of the LCP phase. The effect was more prominent when the viscosity ratio was low and the matrix viscosity was high. At 5 wt% LCP, fibrillation did not occur even at low viscosity ratios and high shear rates. It was also observed that the LCP content must be sufficiently high to allow coalescence of the dispersed phase for subsequent fibrillation to occur. © 2002 Society of Chemical Industry  相似文献   

19.
采用热台偏光显微镜研究了聚丙烯(PP)/共聚酯(COPET)以及PP/COPET/蒙脱土(MMT)复合材料等温结晶时的结晶形态,结果表明:两样品均呈现清晰的球晶所特有的黑十字消光图像,PP/COPET/MMT复合材料的球晶尺寸比PP/COPET样品的球晶尺寸大大减小。采用差示扫描量热法对PP/COPET以及PP/COPET/MMT复合材料的非等温结晶行为进行了研究,结果表明:随着MMT含量的增加,复合材料样品的结晶初始温度和结晶峰温基本呈现逐渐降低趋势,结晶放热焓随MMT含量增加先增加后减小;在不同的降温速率下结晶,两种样品结晶峰温均随降温速率的增大而降低,结晶放热焓也随着结晶速率的增大而降低。采用Jeniorny法处理了PP/COPET和PP/COPET/MMT样品的非等温结晶过程,得出了两体系的结晶速率总体上随着冷却速率的增加而加快,为多维结晶生长体系。  相似文献   

20.
Fibers (strands) with various draw ratios were spun from the liquid crystalline state of a pure aromatic liquid crystalline copoly(ester amide) and the melts of its blend with polycarbonate. Scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC) were employed to investigate the structure and properties of the resulting fibers. Mechanical properties of the fibers were also evaluated. It was found that both the crystallite size and heat of fusion of the liquid crystalline polymer (LCP) increase steadily with draw ratio. However, the crystal-nematic transition temperature of the LCP is virtually unaffected by drawing. Moreover, heat of fusion of LCP is much smaller than that of isotropic condensation polymers despite the presence of very sharp diffraction peaks in WAXS measurements. These results are ascribed to the (semi)rigid rod nature of the LCP chains and the persistence of an ordered structure in the LCP melt, i.e., entropy effect. It was further observed that tensile modulus and tensile strength along fiber axis rise with draw ratio for the composite fibers. The elastic modulus of the composite fibers were found to be as high as 19 GPa and tensile strength reached 146 MPa with draw ratios below 40 and an LCP content of 30 wt%. Compared with the thermoplastic matrix, the elastic modulus and tensile strength of the in-situ composite have increased by 7.3 times and 1.4 times, respectively, with the addition of only 30 wt% LCP. This improvement in mechanical properties is attributed to fibrillation of the LCP phase in the blend and the increasing orientation of the LCP chains along the fiber axis during drawing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号