首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic Resonance Materials in Physics, Biology and Medicine - In magnetic resonance imaging (MRI), compressed sensing (CS) enables the reconstruction of undersampled sparse data sets. Thus,...  相似文献   

2.
Paramagnetic liposomes, spherical particles formed by a lipid bilayer, are able to accommodate a high payload of Gd-containing lipid and therefore can serve as a highly potent magnetic resonance imaging contrast agent. In this paper the relaxation properties of paramagnetic liposomes were studied as a function of composition, temperature and magnetic field strength. The pegylated liposomes with a diameter of approximately 100 nm were designed for favorable pharmacokinetic properties in vivo. The proton relaxivity, i.e. the T1 relaxation rate per mmol of Gd(III) ions, of liposomes with unsaturated DOPC phospholipids was higher than those with saturated DSPC lipids. Addition of cholesterol was essential to obtain monodisperse liposomes and led to a further, although smaller, increase of the relaxivity. Nuclear magnetic relaxation dispersion measurements showed that the relaxivity was limited by water exchange. These results show that these paramagnetic liposomes are very effective contrast agents, making them excellent candidates for many applications in magnetic resonance imaging.  相似文献   

3.
Raufman  Jean-Pierre  Metry  Melissa  Felton  Jessica  Cheng  Kunrong  Xu  Su  Polli  James 《Magma (New York, N.Y.)》2019,32(1):163-171

In up to 50% of people diagnosed with a common ailment, diarrhea-predominant irritable bowel syndrome, diarrhea results from excess spillage of bile acids into the colon—data emerging over the past decade identified deficient release of a gut hormone, fibroblast growth factor 19 (FGF19), and a consequent lack of feedback suppression of bile acid synthesis as the most common cause. 75Selenium homotaurocholic acid (SeHCAT) testing, considered the most sensitive and specific means of identifying individuals with bile acid diarrhea, is unavailable in many countries, including the United States. Other than SeHCAT, tests to diagnose bile acid diarrhea are cumbersome, non-specific, or insufficiently validated; clinicians commonly rely on a therapeutic trial of bile acid binders. Here, we review bile acid synthesis and transport, the pathogenesis of bile acid diarrhea, the reasons clinicians frequently overlook this disorder, including the limitations of currently available tests, and our efforts to develop a novel 19F magnetic resonance imaging (MRI)-based diagnostic approach. We created 19F-labeled bile acid analogues whose in vitro and in vivo transport mimics that of naturally occurring bile acids. Using dual 1H/19F MRI of the gallbladders of live mice fed 19F-labeled bile acid analogues, we were able to differentiate wild-type mice from strains deficient in intestinal expression of a key bile acid transporter, the apical sodium-dependent bile acid transporter (ASBT), or FGF15, the mouse homologue of FGF19. In addition to reviewing our development of 19F-labeled bile acid analogue-MRI to diagnose bile acid diarrhea, we discuss challenges to its clinical implementation. A major limitation is the paucity of clinical MRI facilities equipped with the appropriate coil and software needed to detect 19F signals.

  相似文献   

4.
The applications of ultrasound contrast agents have recently expanded from blood pool enhancement to include passive targeting of physiological systems (in particular, the lymphatic and reticuloendothelial systems) and molecular imaging of factors expressed in angiogenesis, atherosclerosis, and inflammation. This article summarizes the progress made in targeted imaging using ultrasound with an emphasis on the opportunities this research provides for both clinical and research applications. We begin with a summary of current ultrasound contrast technology and then review the latest research in the use of targeted ultrasound contrast agents.  相似文献   

5.
Magnetic resonance imaging is a very flexible modality; the images produced depend critically on the values of many parameters. We have presented adapted waveform encoding as a tool for the intelligent utilization of this flexibility in several specific imaging tasks. We have seen that waveform encoding can be implemented with existing scanners, and have analyzed performance with regard to several figures of merit. We noted several performance advantages which may be attributed to the edge localization properties of the wavelet bases that can be employed in this encoding technique. Finally, a particular instance of the technique was presented in which the encoding basis was chosen to reflect statistical regularities in a particular class of standard diagnostic studies. This basis captures most of the variability of the class in the first basis elements. This can be exploited for reduction of imaging times and for progressive imaging  相似文献   

6.
Magnetic Resonance Materials in Physics, Biology and Medicine - We explored the use of a perfluoro-15-crown-5 ether nanoemulsion (PFC) for measuring tissue oxygenation using a mouse model of...  相似文献   

7.
Targeting and ultrasound imaging of microbubble-based contrast agents   总被引:15,自引:0,他引:15  
Preparation and characterization of targeted microbubbles (ultrasound contrast agents) is described. Specific ligands were attached to the microbubble shell, and ligand-coated microbubbles were selectively attached to various targets, using either an avidin-biotin model system or an antigen-antibody system for targeting to live activated endothelial cells. Firm attachment of microbubbles to the target was achieved. Forces necessary to detach microbubbles from the target were estimated to exceed dozens of pN. Microbubbles were bound to the target even in the rapidly moving stream of the aqueous medium. Down to 20 ng of the ultrasound contrast material on the target surface could be detected by the ultrasound imaging with a commercial medical imaging system. At high bubble density on the target surface, strong ultrasound image attenuation was observed.  相似文献   

8.
Modern magnetic resonance imaging (MRI) systems consist of several complex, high cost subsystems. The cost and complexity of these systems often makes them impractical for use as routine laboratory instruments, limiting their use to hospitals and dedicated laboratories. However, advances in the consumer electronics industry have led to the widespread availability of inexpensive radio-frequency integrated circuits with exceptional abilities. We have developed a small, low-cost MR system derived from these new components. When combined with inexpensive desktop magnets, this type of MR scanner has the promise of becoming standard laboratory equipment for both research and education. This paper describes the development of a prototype desktop MR scanner utilizing a 0.21 T permanent magnet with an imaging region of approximately 2 cm diameter. The system uses commercially available components where possible and is programmed in LabVIEW software. Results from 3D data sets of resolution phantoms and fixed, newborn mice demonstrate the capability of this system to obtain useful images from a system constructed for approximately $13 500.  相似文献   

9.

Objectives

Automatic slice alignment is important for easier operation and shorter examination times in cardiac magnetic resonance imaging (MRI) examinations. We propose a new automatic slice alignment method for six cardiac planes (short-axis, vertical long-axis, horizontal long-axis, 4-chamber, 2-chamber, and 3-chamber views).

Materials and methods

ECG-gated 2D steady-state free precession axial multislice images were acquired using a 1.5-T MRI scanner during a single breath-hold. The scanning time was set to <20 s in 23 volumes from 23 healthy volunteers. In this method, the positions of the mitral valve, cardiac apex, left ventricular outflow tract, tricuspid valve, anterior wall of the heart, and right ventricular corner are detected to determine the positions of six reference planes by combining knowledge-based recognition and image processing techniques. In order to evaluate the results of automatic slice alignment for the short-axis, 4-chamber, 2-chamber, and 3-chamber views, the angular and positional errors between the results obtained by our proposed method and by manual annotation were measured.

Results

The average angular errors for the short-axis, 4-chamber, 2-chamber, and 3-chamber views were 3.05°, 4.52°, 7.28°, and 5.79°, respectively. The average positional errors for the short-axis (base), short-axis (apex), 4-chamber, 2-chamber, and 3-chamber views were 6.61°, 3.80°, 1.55°, 1.52°, and 1.48°, respectively.

Conclusion

The experimental results showed that our proposed method can detect the cardiac planes quickly and accurately. Our method is therefore beneficial to both patients and operators.  相似文献   

10.
OBJECT: A selective-excitation radiofrequency (RF) pulse that uses hard pulses composed of a sequence of composite pulses with positive and negative phases (P/N pulse) is proposed herein. Because the amplitude of the RF signal is unchanged during the excitation, RF amplification can be accomplished using a nonlinear RF power amplifier (i.e., class C or D type). MATERIALS AND METHODS: In this article, Fourier series have been first used to analyze the equivalence between the proposed P/N pulse and the conventional soft pulse on selective excitation. Subsequently, computer simulations based on density-matrix theory are used to compare the excitation profiles of both the soft and the P/N pulses. RESULTS: The excitation profiles of the P/N pulses have been measured experimentally through a home-built 0.3-T magnetic resonance imaging (MRI) system. In addition, several slices of images have been obtained as proofs by using the multislice two-dimensional spin echo sequence through replacement of the conventional soft pulse by the proposed P/N pulse. CONCLUSION: Because the perfect selectivity of the proposed P/N pulse, it can be used for imaging studies to improve the efficiency of amplification at the lowest cost.  相似文献   

11.
A desktop magnetic resonance imaging system.   总被引:2,自引:0,他引:2  
Modern magnetic resonance imaging (MRI) systems consist of several complex, high cost subsystems. The cost and complexity of these systems often makes them impractical for use as routine laboratory instruments, limiting their use to hospitals and dedicated laboratories. However, advances in the consumer electronics industry have led to the widespread availability of inexpensive radio-frequency integrated circuits with exceptional abilities. We have developed a small, low-cost MR system derived from these new components. When combined with inexpensive desktop magnets, this type of MR scanner has the promise of becoming standard laboratory equipment for both research and education. This paper describes the development of a prototype desktop MR scanner utilizing a 0.21 T permanent magnet with an imaging region of approximately 2 cm diameter. The system uses commercially available components where possible and is programmed in LabVIEW software. Results from 3D data sets of resolution phantoms and fixed, newborn mice demonstrate the capability of this system to obtain useful images from a system constructed for approximately $13,500.  相似文献   

12.
A simple multiplexing technique, implemented on a conventional NMR spectrometer is described. It shows that simultaneous acquisition of independent NMR signals with a unique detection chain is possible. Application is performed to proton imaging of objects in two non-interacting antennae. Address for correspondence: Laboratoire de Résonance Magnétique Nucleaire, Batiment 721, Université Claude Bernard Lyon I, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex - France  相似文献   

13.
This work presents approaches and biomedical challenges of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). DCE-MRI using small molecular weight gadolinium chelates enables noninvasive imaging characterization of tissue vascularity. Depending on the technique used, data reflecting tissue perfusion (blood flow, blood volume, mean transit time), microvessel permeability surface area product, and extracellular leakage space can be obtained. Insights into these physiological processes can be obtained from inspection of kinetic enhancement curves or by the application of complex compartmental modeling techniques. Potential clinical applications include screening for malignant disease, lesion characterization, monitoring lesion response to treatment, and assessment of residual disease. Newer applications include prognostication, pharmacodynamic assessments of antivascular anticancer drugs, and predicting efficacy of treatment. For dynamic MRI to enter into widespread clinical practice, it will be necessary to develop standardized approaches to measurement and robust analysis approaches. These include the need for commercial equipment manufacturers to provide robust methods for rapidly measuring time-varying change in T1 relaxation rates, incorporation of arterial input function into kinetic modeling processes, robust analysis software that allows input from a variety of MRI devices, and validated statistical tools for the evaluation of heterogeneity.  相似文献   

14.
The impact of MRI continues to grow due to progress in all phases of the development cycle. Since its initial use for human imaging approximately 20 years ago, magnetic resonance imaging (MRI) has developed into a widely used clinical imaging modality. Now, at the start of the 21st century, the number of MRI systems worldwide is in excess of 10,800. With an average of over ten patients examined per day per machine, the number of clinical studies per day is well over 100,000. Along with X-ray imaging, ultrasound, computed X-ray tomography, and nuclear medicine, MRI is well recognized as a commonly used medical imaging modality. In spite of this significant growth over the last two decades, technical and application development continues. The purpose of this article is to identify the current development of MRI and to attempt to indicate future trends. In some sense this is an update of a similar technical assessment of MRI made four years ago  相似文献   

15.
The concept and the implementation of a parallelized and spin-based simulator for magnetic resonance (MR) imaging is presented. The dynamics of magnetization are modeled using the Bloch equation covering arbitrary radiofrequency (RF) pulses, gradients, main-field inhomogeneity, and relaxation. A temporal decomposition of a given sequence is introduced, leaning to basic sequence elements called atoms. A concept of spatial sampling of the object by spins is proposed, in the course of which Shannon's sampling theorem must be respected. In biomedical MR imaging, spins can be modeled as noninteracting entities, permitting an efficient parallelization of the simulation. The simulator ParSpin was implemented on a heterogeneous, interconnected cluster of workstations based on existing message passing libraries. The communication overhead has been kept moderately small. The aggregate computing performance of many processors enables the research into very complex problems (e.g., three-dimensional or steady-state MR experiments requiring up to 106 spins). Additionally, ParSpin allows a comprehensive visualization for educational purposes.  相似文献   

16.
In this review article, techniques for sodium (23Na) magnetic resonance imaging (MRI) are presented. These techniques can also be used to image other nuclei with short relaxation times (e.g., 39K, 35Cl, 17O). Twisted projection imaging, density-adapted 3D projection reconstruction, and 3D cones are preferred because of uniform k-space sampling and ultra-short echo times. Sampling density weighted apodization can be applied if intrinsic filtering is desired. This approach leads to an increased signal-to-noise ratio compared to postfiltered acquisition in cases of short readout durations relative to T 2 * relaxation time. Different MR approaches for anisotropic resolution are presented, which are important for imaging of thin structures such as myocardium, cartilage, and skin. The third part of this review article describes different methods to put more weighting either on the intracellular or the extracellular sodium signal by means of contrast agents, relaxation-weighted imaging, or multiple-quantum filtering.  相似文献   

17.

Background and methods

A liquid crystal display was modified for use inside a 7 T MR magnet. SNR measurements were performed using different imaging sequences with the monitor absent, present, or activated. fMRI with a volunteer was conducted using a visual stimulus.

Results and discussion

SNR was reduced by 3.7 %/7.9 % in echo planar/fast-spin echo images when the monitor was on which can be explained by the limited shielding of the coated front window (40 dB). In the fMRI experiments, activated regions in the visual cortex were clearly visible. The monitor provided excellent resolution at minor SNR reduction in EPI images, and is thus suitable for fMRI at ultra-high field.  相似文献   

18.

Although there has been a resurgence of interest in low field magnetic resonance imaging (MRI) systems in recent years, low field MRI is not a new concept. FDA has a long history of evaluating the safety and effectiveness of MRI systems encompassing a wide range of field strengths. Many systems seeking marketing authorization today include new technological features (such as artificial intelligence), but this does not fundamentally change the regulatory paradigm for MR systems. In this review, we discuss some of the US regulatory considerations for low field magnetic resonance imaging (MRI) systems, including applicability of existing laws and regulations and how the U.S. Food and Drug Administration (FDA) evaluates low field MRI systems for market authorization. We also discuss regulatory considerations in the review of low field MRI systems incorporating novel AI technology. We foresee that MRI systems of all field strengths intended for general diagnostic use will continue to be evaluated for marketing clearance by the metric of substantial equivalence set forth in the premarket notification pathway.

  相似文献   

19.
A molecular amplifier is a substance which at high dilution can significantly influence the magnetic resonance (MR) properties of water; its gain can be controlled by varying either its chemical or magnetic properties. If the gain of that amplifier is sensitive to the chemical potential of its molecular environment, then it can be used as an MRI-active chemical indicator. Three examples are described: (a) the use of the ethylenediaminetetraacetic acid-copper(II) complex to map the spatial distribution of pH; (b) the use of Fe(II)/Fe(III) ions to map redox potential and thereby reducing species such as ascorbic acid or oxidants such as perbromate ion; (c) similar use of a stable nitroxide free radical to map reducing agents. The mass transport diffusion of those species can be visualized in hydrocolloid gels and in articular cartilage by MR imaging and the diffusion coefficients measured quantitatively using the null-point MR imaging method.  相似文献   

20.
Clinical examinations of reptiles are physically limited and therefore usually have to be complemented by other methods. This is especially true for Chelonians. A modern imaging technique like magnetic resonance imaging is well suited for this purpose. Its application and practical experiences with tortoises are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号