首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Sensing of the volatile organic compounds (VOCs) isopropyl alcohol (IPA) and heptane in air using sub‐millimeter porous silicon‐based sensor elements is demonstrated in the concentration range 50–800 ppm. The sensor elements are prepared as one‐dimensional photonic crystals (rugate filters) by programmed electrochemical etch of p++ silicon, and analyte sensing is achieved by measurement of the wavelength shift of the photonic resonance. The sensors are studied as a function of surface chemistry: ozone oxidation, thermal oxidation, hydrosilylation (1‐dodecene), electrochemical methylation, reaction with dicholorodimethylsilane and thermal carbonization with acetylene. The thermally oxidized and the dichlorodimethylsilane‐modified materials show the greatest stability under atmospheric conditions. Optical microsensors are prepared by attachment of the porous Si layer to the distal end of optical fibers. The acetylated porous Si microsensor displays a greater response to heptane than to IPA, whereas the other chemical modifications display a greater response to IPA than to heptane. The thermal oxide sensor displays a strong response to water vapor, while the acetylated material shows a relatively weak response. The results suggest that a combination of optical fiber sensors with different surface chemistries can be used to classify VOC analytes. Application of the miniature sensors to the detection of VOC breakthrough in a full‐scale activated carbon respirator cartridge simulator is demonstrated.  相似文献   

2.
The p‐type semiconducting copper oxides (CuO and Cu2O) are promising materials for gas sensors, owing to their characteristic oxygen adsorption properties and low operation temperature. In this study, the sensing performance of a CuO‐based chemiresistor is significantly enhanced by incorporating Ag nanoparticles on high‐resolution p‐type CuO/Cu2O nanopattern channels. The high‐resolution CuO/Cu2O/Ag nanochannel is fabricated using a unique top‐down nanolithographic approach. The gas response (ΔR/Ra) of the CuO/Cu2O/Ag gas sensor increases by a maximum factor of 7.3 for various volatile organic compounds compared with a pristine CuO/Cu2O gas sensor. The sensors exhibit remarkable sensitivity (ΔR/Ra = 8.04) at 125 parts per billion (ppb) for acetone analytes. As far as it is known, this is the highest sensitivity achieved for p‐type metal oxide semiconductor (MOS)‐based gas sensors compared to previous studies. Furthermore, the outstanding gas responses observed in this study are superior to the most of n‐type MOS‐based gas sensors. The high sensitivity of the sensor is attributed to i) the high resolution (≈30 nm), high aspect ratio (≈12), and ultrasmall grain boundaries (≈10 nm) of the CuO/Cu2O nanopatterns and ii) the electronic sensitization and chemical sensitization effects induced by incorporating Ag nanoparticles on the CuO/Cu2O channels.  相似文献   

3.
Organic–inorganic hybrid gas sensors can offer outstanding performance in terms of selectivity and sensitivity towards single gas species. The enormous variety of organic functionalities enables novel flexibility of active sensor surfaces compared to commonly used pure inorganic materials, but goes along with an increase of system complexity that usually hinders a predictable sensor design. In this work, an ultra‐selective NO2 sensor is realized based on self‐assembled monolayer (SAM)‐modified semiconductor nanowires (NWs). The crucial chemical and electronic parameters for an effective interaction between the sensor and different gas species are identified using density functional theory simulations. The theoretical findings are consistent with the experimentally observed extraordinary selectivity and sensitivity of the amine‐terminated SnO2 NW towards NO2. The energetic position of the SAM–gas frontier orbitals with respect to the NW Fermi level is the key to ensure or impede an efficient charge transfer between the NW and the gas. As this condition strongly depends on the gas species and the sensor system, these insights into the charge transfer mechanisms can have a substantial impact on the development of highly selective hybrid gas sensors.  相似文献   

4.
A new volatile organic compounds (VOCs) sensing concept called humidity-initiated gas (HIG) sensors is described and demonstrated. HIG sensors employ the impedance of water assembled at sensor interfaces when exposed to humidity to sense VOCs at low concentrations. Here, two HIG sensor variants are studied—Type I and Type II. Type I sensors benefit from simplicity, but are less attractive in terms of key performance metrics, including response time and detection limits. Type II sensors are more complex, but are more attractive in terms of key performance metrics. Notably, it is observed that the best-in-class Type II HIG sensors achieve <2 min response times and <10 ppb detection limit for geranyl acetone, a VOC linked to the asymptomatic form of Huanglongbing (HLB) citrus disease. Both Type I and Type II sensors are assembled from off-the-shelf materials and demonstrate remarkable stability at high humidity. HIG sensors are proposed as an attractive alternative to existing VOCs sensors for remote field detection tasks, including VOCs detection to diagnose HLB citrus disease.  相似文献   

5.
Hybrid self‐assembly has become a reliable approach to synthesize soft materials with multiple levels of structural complexity and synergistic functionality. In this work, photoluminescent graphene quantum dots (GQDs, 2–5 nm) are used for the first time as molecule‐like building blocks to construct self‐assembled hybrid materials for label‐free biosensors. Ionic self‐assembly of disc‐shaped GQDs and charged biopolymers is found to generate a series of hierarchical structures that exhibit aggregation‐induced fluorescence quenching of the GQDs and change the protein/polypeptide secondary structure. The integration of GQDs and biopolymers via self‐assembly offers a flexible toolkit for the design of label‐free biosensors in which the GQDs serve as a fluorescent probe and the biopolymers provide biological function. The versatility of this approach is demonstrated in the detection of glycosaminoglycans (GAGs), pH, and proteases using three strategies: 1) competitive binding of GAGs to biopolymers, 2) pH‐responsive structural changes of polypeptides, and 3) enzymatic hydrolysis of the protein backbone, respectively. It is anticipated that the integrative self‐assembly of biomolecules and GQDs will open up new avenues for the design of multifunctional biomaterials with combined optoelectronic properties and biological applications.  相似文献   

6.
The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high‐performance p‐type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin‐like, fiber‐like, and nanorods), are prepared by a microwave‐assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X‐ray powder diffraction, nitrogen adsorption isotherms, field‐emission scanning electron microscopy and high‐resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin‐like structures is found to be most effective for hydrogen detection in the range of parts‐per‐million at 200 °C with 300‐fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p‐type semiconductors.  相似文献   

7.
A significantly improved material is developed for application to chemiresistors, which are resistance‐based sensors for volatile organic compounds. This material is a polymer composite containing Au‐coated magnetic particles organized into electrically conducting pathways by magnetic fields. This improved material overcomes the various problems inherent to conventional carbon‐black chemiresistors, while achieving an unprecedented response magnitude. When exposed to chemical vapors, the polymer swells only slightly, yet this is amplified into large, reversible resistance changes, as much as (1 × 1011)% at a swelling of only 1.5%. These conductor–insulator transitions occur over such a narrow range of analyte vapor concentration that these devices can be described as chemical switches. The sensitivity and response range of these sensors can be tailored over a wide range by controlling the stress within the composite, including through the application of a magnetic field. Such tailorable sensors can be used to create sensor arrays that can accurately determine analyte concentration over a broad concentration range, or can be used to create logic circuits that signal a particular chemical environment.  相似文献   

8.
付萍  林志东  张宏 《半导体技术》2011,36(3):182-186
采用溶胶-凝胶法制备了不同配比的TiO2-SnO2纳米复合材料,以其作为气敏材料制备成旁热式气敏元件,研究了气敏元件在紫外光照下的气敏特性。结果表明,复合材料平均晶粒尺寸为19 nm,SnO2晶型为金红石型,气敏元件的电导在紫外光照下增加,对醇类有机挥发性气体的气敏灵敏度也显著提高,气敏元件的电阻、灵敏度均随TiO2含量的增加而增大。工作温度160℃时对乙醇气体的灵敏度为18,240℃时灵敏度为52,是无光照时的1.6倍,响应时间为5 s,恢复时间为9 s。  相似文献   

9.
针对基于敏感材料金属卟啉和Pt(Me2bzimpy)Cl+的Cl-盐接触挥发性有机气体后会产生明显的人眼可识别的颜色变化,可以方便地实现一种新型的气体传感系统,该系统将传统的气体嗅觉信息转变为视觉上的颜色信息,可以识别多种气体。系统前端为敏感材料制作的气敏阵列,后端用嵌入式系统对前端阵列图像进行采集和处理,然后通过Hough变换和颜色识别算法完成图像的识别。实验中,无论是醇类,胺类,醛类和苯类的一些气体,还是四氢呋喃,乙酸乙酯,乙腈,丙酮,它们的图像都有明显差别,因此该系统可用于易挥发有机气体的检测,目前可识别的气体有14种。  相似文献   

10.
Sensor nodes in ubiquitous sensor networks require autonomous replacement of deteriorated gas sensors with reserved sensors, which has led us to develop an encapsulation technique to avoid poisoning the reserved sensors and an autonomous activation technique to replace a deteriorated sensor with a reserved sensor. Encapsulations of In2O3 nanoparticles with poly(ethylene‐co‐vinyl alcohol) (EVOH) or polyvinylidene difluoride (PVDF) as gas barrier layers are reported. The EVOH or PVDF films are used for an encapsulation of In2O3 as a sensing material and are effective in blocking In2O3 from contacting formaldehyde (HCHO) gas. The activation process of In2O3 by removing the EVOH through heating is effective. However, the thermal decomposition of the PVDF affects the property of the In2O3 in terms of the gas reactivity. The response of the sensor to HCHO gas after removing the EVOH is 26%, which is not significantly different with the response of 28% in a reference sample that was not treated at all. We believe that the selection of gas barrier materials for the encapsulation and activation of In2O3 should be considered because of the ill effect the byproduct of thermal decomposition has on the sensing materials and other thermal properties of the barrier materials.  相似文献   

11.
Inspired by the powerful photosensitizing properties of the red hair pigments pheomelanins, a photoresponsive cysteine‐containing variant of the adhesive biopolymer polydopamine (pDA) is developed via oxidative copolymerization of dopamine (DA) and 5‐S‐cysteinyldopamine (CDA) in variable ratios. Chemical and spectral analysis indicate the presence of benzothiazole/benzothiazine units akin to those of pheomelanins. p(DA/CDA) copolymers display ­impedance properties similar to those of biological materials and a marked photoimpedance response to light stimuli. The use of the p(DA/CDA) copolymer to implement a solution‐processed hybrid photocapacitive/resistive metal‐insulator‐semiconductor (MIS) device disclosed herein is the first example of technological exploitation of photoactive, red‐hair‐inspired biomaterials as soft enhancement layer for silicon in an optoelectronic device. The bio‐inspired materials described herein may provide the active component of new hybrid photocapacitive sensors with a chemically tunable response to visible light.  相似文献   

12.
Light‐weight, power‐free mechanochromic sensors that can change and record the reflective color depending on the magnitude and rate of the applied force are fabricated from inverse opals by infiltrating the colloidal crystals of silica particles with uncrosslinked SU‐8, followed by removal of the colloidal templates. The mechanical sensing range of the materials is high, 17.6–20.4 MPa. Due to elastoplastic deformation of the SU‐8 films, the deformed structures and thus colors can be locked after the removal of the load, therefore establishing a quantitative relationship between the mechanical force and optical responses. In comparison, mechanochromic photonic gels reported in the literature typically detect force in the range of 10–100 kPa; once the load is removed, the structure and color return back to the original ones. The mechanochromic sensors are highly sensitive: the ratio of shift in the stopband wavelength to the change in applied strain is up to 5.7 nm per percent, the highest among literature. Comparison of finite element simulations with experiments confirms the elastoplastic deformation of the films and highlights that reconfiguration of pore shape under compression plays a key role in the mechanochromic response.  相似文献   

13.
The catalytic activity of hybrid organic–inorganic silica glasses doped with the ruthenium species tetra‐n‐propylammonium perruthenate (TPAP) in the aerial oxidation of alcohols to carbonyl compounds, either in toluene or in dense‐phase CO2, substantially increases with time several months after the xerogels' preparation, yielding the most active ruthenium‐based aerobic‐oxidation catalysts reported thus far. The doped sol–gels are living materials, and an explanation of the observed reactivity enhancement is given, which is thought to have general validity for future applications to a wide variety of relevant heterogeneous processes.  相似文献   

14.
Biomineralization, the natural pathway of assembling biogenic inorganic compounds, inspires us to exploit unique, effective strategies to fabricate functional materials with intricate structures. In this article, the recent advances in bio‐inspired synthesis of minerals—with a focus on those of calcium‐based minerals—and their applications to the design of functional materials for energy, environment, and biomedical fields are reviewed. Biomimetic mineralization is extending its application range to unconventional area such as the design of component materials for lithium‐ion batteries and elaborately structured composite materials utilizing carbon dioxide gas. Materials with highly enhanced mechanical properties are synthesized through emulating the nacre structure. Studies of bioactive minerals‐carbon hybrid materials show an expansion of potential applications to fields ranging from interdisciplinary science to practical engineering such as the fabrication of reinforced bone‐implantable materials.  相似文献   

15.
The sensing performance of chemical sensors can be achieved not only by modification or hybridization of sensing materials but also through new design in device geometry. The performance of a chemical sensing device can be enhenced from a simple three‐dimensional (3D) chemiresistor‐based gas sensor platform with an increased surface area by forming networked, self‐assembled reduced graphene oxide (R‐GO) nanosheets on 3D SU8 micro‐pillar arrays. The 3D R‐GO sensor is highly responsive to low concentration of ammonia (NH3) and nitrogen dioxide (NO2) diluted in dry air at room temperature. Compared to the two‐dimensional planar R‐GO sensor structure, as the result of the increase in sensing area and interaction cross‐section of R‐GO on the same device area, the 3D R‐GO gas sensors show improved sensing performance with faster response (about 2%/s exposure), higher sensitivity, and even a possibly lower limit of detection towards NH3 at room temperature.  相似文献   

16.
Multifunctional flexible sensors that are sensitive to different physical and chemical stimuli but remain unaffected by any mechanical deformation and/or changes still present a challenge in the implementation of flexible devices in real‐world conditions. This challenge is greatly intensified by the need for an eco‐friendly fabrication technique suitable for mass production. A new eco‐friendly and scalable fabrication approach is reported for obtaining thin and transparent multifunctional sensors with regulated electrical conductivity and tunable band‐gap. A thin (≈190 nm thickness) freestanding sensing film with up to 4 inch diameter is demonstrated. Integration of the freestanding films with different substrates, such as polyethylene terephthalate substrates, silk textile, commercial polyethylene thin film, and human skin, is also described. These multifunctional sensors can detect and distinguish between different stimuli, including pressure, temperature, and volatile organic compounds. All the sensing properties explored are stable under different bending/strain states.  相似文献   

17.
When hydrogels are designed for biological applications, the mechanical properties are carefully chosen to match their precise application. However, traditional methodologies of mechanical characterization (simple shear or compression/extension) commonly ignore the multiaxiality of in vivo deformations. A recent study highlights that biopolymers and tissue indeed show a complex response to combined uniaxial and shear strains. In this study a synthetic yet biomimetic fibrous hydrogel is used, which is based on polyisocyanides and forms a self-assembled network of branched semiflexible chains, similar in architecture networks of structural biopolymers like actin, collagen, and fibrin. Its synthetic nature allows to decouple key parameters of these networks and individually understand their impact on the mechanical response under multiaxial deformation. Experimentally, it is found that the persistence length is a key parameter of biological networks, which tunes softening of gels under compression: The stiffer the polymer, the more the network softens in compression. This study provides insights into tissue behavior that likely is only obtainable from synthetic model systems and is able to direct further the design of new synthetic biomimetic soft materials that are in high demand as tunable bio-free extracellular matrix materials.  相似文献   

18.
Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.  相似文献   

19.
A new flexible smelling electronic skin (e‐skin) has been realized from PANI(polyaniline)/PTFE(polytetrafluoroethylene)/PANI sandwich nano­structures basing on the triboelectrification/gas‐sensing coupling effect. The e‐skin can be driven by human motion/breath and efficiently convert mechanical vibration into electric impulse. And the output current/voltage is significantly dependent on the environmental atmosphere (volatile organic compounds in air), which can act as olfactory bionic electric impulse. Taking ethanol gas as an example, the detection limit of the e‐skin at room temperature is 30 ppm, and the response is up to 66.8 upon exposure to 210 ppm ethanol. Interestingly, the response of the e‐skin keeps stable with different dimensional sizes or under different strains/bending status. The working mechanism can be ascribed to the coupling of triboelectrification effect and surface reaction at the interfaces. Furthermore, an application of the flexible smelling e‐skin for visually identifying drunken driver without any external electricity power has been demonstrated. The results can open a possible new direction for the development of specialized‐function e‐skin and will further expand the scope for self‐powered nanosystems.  相似文献   

20.
SBA‐15 (2D hexagonal structure) and KIT‐6 (3D cubic structure) silica materials are used as templates for the synthesis of two different crystalline mesoporous WO3 replicas usable as NO2 gas sensors. High‐resolution transmission electron microscopy (HRTEM) studies reveal that single‐crystal hexagonal rings set up the atomic morphology of the WO3 KIT‐6 replica, whereas the SBA‐15 replica is composed of randomly oriented nanoparticles. A model capable of explaining the KIT‐6 replica mesostructure is described. A small amount of chromium is added to the WO3 matrix in order to enhance sensor response. It is demonstrated that chromium does not form clusters, but well‐distributed centers. Pure WO3 KIT‐6 replica displays a higher response rate as well as a lower response time to NO2 gas than the SBA‐15 replica. This behavior is explained by taking into account that the KIT‐6 replica has a higher surface area as demonstrated by Brunauer–Emmett–Teller analyses and its mesostructure is fully maintained after the screen‐printing step involved in sensors preparation. The presence of chromium in the material results in a shorter response time and improved sensor response to the lowest NO2 concentrations tested. Electrical differences related to mesostructure are reduced as a result of additive introduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号