共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel method making use of block copolymer self‐assembly in nematic liquid crystals (LCs) is described for preparing macroscopically oriented nanofibrils of π‐conjugated semiconducting polymers. Upon cooling, a diblock copolymer composed of regioregular poly(3‐hexylthiophene) (P3HT) and a liquid crystalline polymer (LCP) in a block‐selective LC solvent can self‐assemble into oriented nanofibrils exhibiting highly anisotropic absorption and polarized photoluminescence emission. An unusual feature of the nanofibrils is that P3HT chains are oriented along the fibrils' long axis. This general method makes it possible to use LCs as an anisotropic medium to grow oriented nanofibrils of many semiconducting polymers insoluble in LCs. 相似文献
3.
Meng Wang Cheng Zou Jian Sun Lanying Zhang Ling Wang Jiumei Xiao Fasheng Li Ping Song Huai Yang 《Advanced functional materials》2017,27(46)
Electrically responsive photonic crystals represent one of the most promising intelligent materials for technological applications in optoelectronics. In this research, a polymer‐stabilized blue phase (PSBP) I film with the self‐organized 3D nanostructure is fabricated, and an electrically tunable photonic bandgap (PBG) is achieved. Interestingly, the large‐scale shift of the PBG covering the entire visible spectrum is found to be asymmetric and can be modulated by the polarity and magnitude of bias voltage. Moreover, to demonstrate the usability in optical devices, blue phase lasers are developed by doping the PSBP material with fluorescent dyes. And mirrorless lasing emission with electrically tunable wavelength is observed. This self‐assembled soft material is prospective to produce large‐scale electrically responsive photonic crystals in facile fabrication process and has enormous potential applications in intelligent optoelectronic devices, such as 3D tunable lasers, reflective full‐color displays, or photonic integrated circuits. 相似文献
4.
Iryna Gryn Emmanuelle Lacaze Roberto Bartolino Bruno Zappone 《Advanced functional materials》2015,25(1):142-149
Large‐area periodic defect patterns are produced in smectic A liquid crystals confined between rigid plate electrodes that impose conflicting parallel and normal anchoring conditions, inducing the formation of topological defects. Highly oriented stripe patterns are created in samples thinner than 2 μm due to self‐assembly of linear defect domains with period smaller than 4 μm, whereas hexagonal lattices of focal conic domains appear for thicker samples. The pattern type (1d/2d) and period can be controlled at the nematic–smectic phase transition by applying an electric field, which confines the defect domains to a thin surface layer with thickness comparable to the nematic coherence length. The pattern morphology persists in the smectic phase even after varying the field or switching it off. Bistable, non‐equilibrium patterns are stabilized by topological constraints of the smectic phase that hinder the rearrangement of defects in response to field variations. 相似文献
5.
6.
Fascinating nematic‐ and smectic‐like self‐assembled arrays are observed for gold nanorods partially capped with either laterally or terminally attached nematic liquid crystals upon slow evaporation of an organic solvent on TEM grids. These arrays can be manipulated and reoriented by applying an external magnetic field from quasi‐planar to vertical similar to a Fréedericksz transition of common organic nematic liquid crystals. Birefringence and thin film textures of these self‐assembled gold nanorod arrays observed by polarized optical microscopy are strongly reminiscent of common organic nematic liquid crystal textures between crossed polarizers and, additionally, support the formation of ordered liquid crystal‐like anisotropic superstructures. The ordering within these arrays is also confirmed in bulk samples using small angle X‐ray scattering (SAXS). 相似文献
7.
Yoshimitsu Sagara Shogo Yamane Toshiki Mutai Koji Araki Takashi Kato 《Advanced functional materials》2009,19(12):1869-1875
Here, a photoluminescent liquid crystal that exhibits a change of emission color on the metastable–stable phase transition induced by external stimuli is prepared. A 2,6‐diethynylanthracene derivative with amide groups and dendritic side chains exhibits a columnar phase on slow cooling from the isotropic phase and shows blue emission in this columnar phase. In contrast, a cubic phase is obtained by rapid cooling from the isotropic phase. In the cubic phase, the 2,6‐diethynylanthracene cores form excimers, resulting in yellow emission. While the columnar phase is a stable liquid‐crystalline (LC) phase, the cubic phase is a metastable LC phase. It is found that a change of the photoluminescent color from yellow to blue is observed on the cubic‐columnar phase transition induced by heating or mechanical shearing for this 2,6‐diethynylanthracene derivative in the cubic phase. This change of photoluminescent color is ascribed to the inhibition of excimer formation on the metastable–stable LC phase transition. 相似文献
8.
Liquid‐Crystalline Electrolytes for Lithium‐Ion Batteries: Ordered Assemblies of a Mesogen‐Containing Carbonate and a Lithium Salt
下载免费PDF全文

Junji Sakuda Eiji Hosono Masafumi Yoshio Takahiro Ichikawa Takuro Matsumoto Hiroyuki Ohno Haoshen Zhou Takashi Kato 《Advanced functional materials》2015,25(8):1206-1212
Thermotropic liquid‐crystalline (LC) electrolytes for lithium‐ion batteries are developed for the first time. A rod‐like LC molecule having a cyclic carbonate moiety is used to form self‐assembled two‐dimensional ion‐conductive pathways with lithium salts. Electrochemical and thermal stability, and efficient ionic conduction is achieved for the liquid crystal. The mixture of the carbonate derivative and lithium bis(trifluoromethylsulfonyl)imide is successfully applied as an electrolyte in lithium‐ion batteries. Reversible charge–discharge for both positive and negative electrodes is observed for the lithium‐ion batteries composed of the LC electrolyte. 相似文献
9.
Liquid Crystals: Liquid‐Crystalline Electrolytes for Lithium‐Ion Batteries: Ordered Assemblies of a Mesogen‐Containing Carbonate and a Lithium Salt (Adv. Funct. Mater. 8/2015)
下载免费PDF全文

Junji Sakuda Eiji Hosono Masafumi Yoshio Takahiro Ichikawa Takuro Matsumoto Hiroyuki Ohno Haoshen Zhou Takashi Kato 《Advanced functional materials》2015,25(8):1205-1205
10.
Tomy Cherian Danilo Rosa Nunes Thomas G. Dane Johan Jacquemin Ulla Vainio Teemu T. T. Myllymki Jaakko V. I. Timonen Nikolay Houbenov Manuel Marchal Patrice Rannou Olli Ikkala 《Advanced functional materials》2019,29(49)
Materials involving nanoconfinement of ionic liquids (ILs) have been pursued for functionalities and ionic devices. However, their complex synthesis, challenges to achieve long‐range order, and laborious tunability limit their practical implementation. Herein, these challenges are addressed by complexing surfactants to ILs, yielding a facile, modular, and scalable approach. Based on structural screening, ionic complexation of di‐n‐nonylamine to the terminal sulfonic acid of 1‐(4‐sulfobutyl)‐3‐methylimidazolium hydrogen sulfate IL is selected as a proof of concept. Spontaneous homeotropic smectic order over micrometers is observed, with alternating ionic and alkyl layers. The 1 nm thick ionic layers involve 2D crystalline internal order up to 150 °C, strongly promoting anisotropic ion transport (σ||/σ⊥ > 6500), and curiously, still allowing fluidity. High ionic conductivity of 35 mS cm?1 and mesoscopic diffusion coefficient of ≈10?5 cm2 s?1 at 150 °C along the ionic layers are observed. Fast anisotropic ion transport by simply complexing two components open doors to functional materials and applications. 相似文献
11.
Shuangjie Wang Zhen Li Yuanyuan Zhang Xingrui Liu Jian Han Xuanhua Li Zhike Liu Shengzhong Liu Wallace C. H. Choy 《Advanced functional materials》2019,29(15)
Despite being a promising candidate for next‐generation photovoltaics, perovskite solar cells (PSCs) exhibit limited stability that hinders their practical application. In order to improve the humidity stability of PSCs, herein, a series of ionic liquids (ILs) “1‐alkyl‐4‐amino‐1,2,4‐triazolium” (termed as RATZ; R represents alkyl chain, and ATZ represents 4‐amino‐1,2,4‐triazolium) as cations are designed and used as additives in methylammonium lead iodide (MAPbI3) perovskite precursor solution, obtaining triazolium ILs‐modified PSCs for the first time (termed as MA/RATZ PSCs). As opposed to from traditional methods that seek to improve the stability of PSCs by functionalizing perovskite film with hydrophobic molecules, humidity‐stable perovskite films are prepared by exploiting the self‐assembled monolayer (SAM) formation of water‐soluble triazolium ILs on a hydrophilic perovskite surface. The mechanism is validated by experimental and theoretical calculation. This strategy means that the MA/RATZ devices exhibit good humidity stability, maintaining around 80% initial efficiency for 3500 h under 40 ± 5% relative humidity. Meanwhile, the MA/RATZ PSCs exhibit enhanced thermal stability and photostability. Tuning the molecule structure of the ILs additives achieves a maximum power conversion efficiency (PCE) of 20.03%. This work demonstrates the potential of using triazolium ILs as additives and SAM and molecular design to achieve high performance PSCs. 相似文献
12.
Christian Ohm Eva‐Kristina Fleischmann Isabelle Kraus Christophe Serra Rudolf Zentel 《Advanced functional materials》2010,20(24):4314-4322
In this article new results on the preparation of monodisperse particles from a liquid crystalline elastomer in a microfluidic setup are presnted. For this, droplets from a liquid crystalline monomer are prepared in a microfluidic device and polymerized while they are flowing inside a microtube. The particles obtained by this method possess an internal orientation, which gives them actuating properties. When they are heated into the isotropic phase of the liquid crystalline material they show a reversible change in shape whereby they change their length in one direction by almost 100%. It is shown how the variation of experimental parameters during their synthesis impacts the properties of these micro‐actuators. Influence over their primal shape, the strength of their shape changing properties, their size, and their mechanical properties is demontrated. From the systematic variation of experimental parameters a deep understanding of the complex processes taking place in a flowing droplet of a liquid crystalline material is obtainted. Additionally NMR analysis and swelling experiments on these actuating materials are provided. 相似文献
13.
Seyed Hamed Aboutalebi Mohsen Moazzami Gudarzi Qing Bin Zheng Jang‐Kyo Kim 《Advanced functional materials》2011,21(15):2978-2988
A novel process is developed to synthesize graphene oxide sheets with an ultralarge size based on a solution‐phase method involving pre‐exfoliation of graphite flakes. Spontaneous formation of lyotropic nematic liquid crystals is identified upon the addition of the ultralarge graphene oxide sheets in water above a critical concentration of about 0.1 wt%. It is the lowest filler content ever reported for the formation of liquid crystals from any colloid, arising mainly from the ultrahigh aspect ratio of the graphene oxide sheets of over 30 000. It is proposed that the self‐assembled brick‐like graphene oxide nanostructure can be applied in many areas, such as energy‐storage devices and nanocomposites with a high degree of orientation. 相似文献
14.
Christian Ohm Eva‐Kristina Fleischmann Isabelle Kraus Christophe Serra Rudolf Zentel 《Advanced functional materials》2010,20(24):4210-4210
In this article new results on the preparation of monodisperse particles from a liquid crystalline elastomer in a microfluidic setup are presnted. For this, droplets from a liquid crystalline monomer are prepared in a microfluidic device and polymerized while they are flowing inside a microtube. The particles obtained by this method possess an internal orientation, which gives them actuating properties. When they are heated into the isotropic phase of the liquid crystalline material they show a reversible change in shape whereby they change their length in one direction by almost 100%. It is shown how the variation of experimental parameters during their synthesis impacts the properties of these micro‐actuators. Influence over their primal shape, the strength of their shape changing properties, their size, and their mechanical properties is demontrated. From the systematic variation of experimental parameters a deep understanding of the complex processes taking place in a flowing droplet of a liquid crystalline material is obtainted. Additionally NMR analysis and swelling experiments on these actuating materials are provided. 相似文献
15.
Takuma Yasuda Hirotaka Ooi Jun Morita Yusuke Akama Kiyoshi Minoura Masahiro Funahashi Takeshi Shimomura Takashi Kato 《Advanced functional materials》2009,19(3):411-419
A series of liquid‐crystalline (LC) π‐ ‐conjugated oligothiophenes bearing three or two alkoxy chains at their extremities has been designed and synthesized. These polycatenar oligothiophenes form various LC nanostructures including smectic, columnar, and micellar cubic phases. These properties depend on the number and length of the terminal alkoxy chains. The hole mobilities for the oligothiophenes have been measured. The layered smectic and columnar structures are capable of transporting holes, leading to mobilities of up to 0.01 cm2 V?1 s?1. The columnar LC assemblies have also been explored to produce linearly polarized light‐emission. Fine red polarized fluorescence is observed from a uniaxially aligned film of the oligothiophenes. The redox properties of the oligothiophenes both in solutions and in films have been examined. The oligothiophenes exhibit electrochromism upon applying an oxidative potential. The present design strategy is useful for fabricating a variety of functional electro‐active molecular assemblies. 相似文献
16.
17.
Chen Zhang Hailu Wang Song Guan Zihao Guo Xiaoxiong Zheng Youjun Fan Ying Wang Ting Qu Yongbin Zhao Aihua Chen Guang Zhu Zhong Lin Wang 《Advanced functional materials》2019,29(13)
Here, a self‐powered optical switch (OS) composed of a surface‐etched single‐electrode triboelectric nanogenerator (TENG) and a polymer‐dispersed liquid crystal (PDLC) film is reported. The working principle of the developed OS is that the liquid crystal alignment can be driven by triboelectrification‐generated voltage, inducing the PDLC film to rapidly switch its initial translucent state to an instantaneous transparent state. An output voltage of 360 V is generated upon the PDLC film when a nitrile rubber film contacts with the TENG at an area of 25 cm2 and a velocity of 0.4 m s?1. As such, a wide dimming range with the relative transmitted light intensity from 0.05 to 0.85 can be achieved for the OS. Enabled by the unique mechano‐electro‐optical reaction, the effects of a series of structural parameters on the performance of the OS are methodically studied. Particularly, through integrating the OS with a visible‐light‐operated signal‐processing circuit, a complete wireless sensing system with a fully power‐free sensing node is developed. The paradigms of hand touching and foot stepping triggered wireless alarms are demonstrated, explicitly showing great potential for the system in many possible interactive human–machine interface applications, such as surveillance, security systems, remote operation, and automatic control. 相似文献
18.
Significant anisotropic electrical conduction in organosilica films is achieved by long‐range orientation of electroactive perylene bisimide (PBI) moieties in the silica scaffold. A new PBI‐based organosilane precursor is designed with lyotropic liquid‐crystalline properties. The PBI precursor with triethoxysilylphenyl groups exhibits a hexagonal columnar phase in the presence of organic solvents. The lyotropic liquid‐crystalline behavior of the precursor enables the preparation of dip‐coated films consisting of uniaxially aligned columnar aggregates of the PBI precursor on the centimeter scale. The oriented structure is successfully fixed by in situ polycondensation, which yields insoluble, thermally stable PBI–silica hybrid films. The oriented organosilica films doped with hydrazine exhibit high electrical conductivities on the order of 10?2 S cm?1, which are at the highest level for organosilica materials, and are comparable to those of all‐organic PBI assemblies. Definite anisotropy of conductivities is also found for these films. The present results suggest that the induction of significant electrical properties in organic molecular assemblies is compatible with the structural stabilization by inorganic–organic hybridization. 相似文献
19.
Gerardus M. Bögels Jody A. M. Lugger Olga J. G. M. Goor Rint P. Sijbesma 《Advanced functional materials》2016,26(44):8023-8030
The development of a nanoporous material from a columnar liquid crystalline complex between a polymerizable benzoic acid derivative and a 1,3,5‐tris(1H‐benzo[d]imidazol‐2‐yl)benzene template molecule is described. The morphology of the liquid crystalline complex is retained upon polymerization and quantitative removal of the template molecule affords a nanoporous material with the same lattice parameters. The nanoporous material selectively binds cations from aqueous solution, with selectivity for sodium and potassium ions over lithium and barium ions, as shown with FT‐IR. Binding is also quantified gravimetrically with a quartz crystal microbalance with dissipation monitoring, a technique that is used for this purpose for the first time here. 相似文献
20.
Amphiphilic Janus particles feature the combination of two different functional materials in one single colloid, as well as the possibility of self‐assembly at interfaces into complex superstructures. In this article, the self‐assembly of dual temperature responsive amphiphilic Janus particles at liquid–liquid interfaces and their subsequent conversion into an actuating layer‐shaped surface are presented. These microparticles are produced in a capillaries based continuous flow microfluidic device by photoinitiated radical polymerization. The hydrophobic part of the Janus particles contains a liquid crystalline elastomer (LCE), which performs a strong actuation up to 95% during the nematic–isotropic phase transition. The other side consists of a p(NIPAAm) hydrogel, which features volumetric expansions up to 280% below the lower critical solution temperature. A multistep molding process is developed to uniformly align the Janus particles at a toluene/water boundary surface and to embed the particles into a hydrogel matrix. A particle covered hydrogel layer is obtained, which features a collective actuation of the rod‐like LCE parts on the surface and a bundling of the resulting forces during the phase transition. 相似文献