共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
在实际应用中,为了节省带宽和方便存储,图像和视频通常被下采样和压缩,而降质的图像与视频无法满足人们的实际需求。针对这一问题,采用了一种双网络结构的超分辨率重建方法,首先建立下采视频与压缩后的低分辨率视频的映射关系,然后建立质量增强的压缩视频与原始视频的映射关系,最终在输出端可以得到质量提升的视频帧。在网络中,采用密集残差块来提取压缩视频中丰富的局部分层特征,并结合全局残差学习恢复视频中的高频信息。在压缩环节,采用高性能视频编码来验证所提算法的有效性。实验结果表明,相比于主流的视频编码标准和先进的超分辨率重建算法,所提方法能有效提升编码视频的率失真性能。 相似文献
3.
4.
5.
针对在有限带宽条件下,传输视频时,往往需要先将视频下采样为低分辨率视频再进一步压缩,从而导致视频质量严重降低的问题,提出了一种采用光流特征对齐的压缩视频超分辨率重建方法,能够有效恢复下采样和压缩过程造成的信息损失,最终获得高质量的重建视频。首先将压缩后的低分辨率视频通过质量增强网络进行去压缩处理,其次通过超分辨率重建网络将质量增强的低分辨率视频恢复至原始分辨率。上述网络均采用基于光流的特征对齐,并且特征以双向传播的方式在网络中进行传播。实验结果表明,相比于高效视频编码(High Efficiency Video Coding,HEVC)标准和传统的超分辨率重建算法,当量化参数(Quantization Parameter,QP)为32时,所提方法在随机接入配置下,峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)平均可提升0.92 dB,有效提升了压缩视频的质量。 相似文献
6.
高分辨率图像是人们一直追求的目标。超分辨率图像重建技术就是人们获取高分辨率图像的一种很重要的方法。本文分析了超分辨率图像重建的原理,总结了各种重建方法的特点,指出超分辨率图像重建的发展历史、应用场合和前景。 相似文献
7.
为了有效地重建压缩低分辨率图像,提出一种基于针对性字典的压缩图像稀疏超分辨率重建算法.首先,根据压缩低分辨率图像的形成特点,对训练库图像进行针对性的下采样压缩编码处理,进行超完备字典的训练;然后,通过训练所得的针对性字典对压缩低分辨率图像进行稀疏表示的超分辨率重建.为进一步恢复图像的高频信息,进行了针对性残差字典训练,并对图像进行高频信息补偿,得到稀疏重建后的图像主观效果更加突出,客观评价参数也得到较大提升.实验结果表明,该算法对压缩图像的超分辨率重建更具针对性,具有良好鲁棒性和高效性. 相似文献
8.
本文首先探讨了SRCNN模型在视频超分辨率重建中的应用,随后结合GPAC框架的多媒体处理能力,实现了低分辨率视频流的超分辨率重建,并通过自适应流媒体传输技术优化了带宽和视频质量之间的平衡。 相似文献
9.
《现代电子技术》2017,(13):57-61
针对基于学习的人脸超分辨率算法噪点、伪影较多,且噪声鲁棒性较差的问题,提出一种基于在线字典学习的人脸超分辨率重建算法。以人脸图集作为训练图库,运用在线字典学习方法提高字典训练的精度。独立调整字典学习阶段的正则化参数λt和求解重建稀疏系数阶段的λr,以获取最优的超完备字典和稀疏系数用于图像重建。实验结果表明,目标图像峰值信噪比比同一类型的稀疏编码超分法平均提高了0.85 d B,结构相似性增加了0.013 3,有效地抑制了噪点和伪影。在含噪人脸图像应用中,噪声水平提高时,峰值信噪比下降相对较平缓,提升人脸超分效果的同时改善了算法的噪声鲁棒性。 相似文献
10.
11.
超分辨率图像重构算法的研究 总被引:4,自引:2,他引:4
图像重构是数字图像处理的一个重要分支。文章在图像配准的基础之上,采用后向投影迭代算法对图像序列进行了高分辨率重构,并给出了其中详细的算法和实现过程。实验仿真结果表明该算法运算量小,收敛速度较快.具有良好重构效果。 相似文献
12.
超分辨力图像处理技术进展及在遥感中的应用 总被引:4,自引:6,他引:4
介绍了超分辨力图像复原处理技术在国内外的进展,着重介绍了基于Baves分析的单幅图像超分辨力算法——基于Poisson分布的最大似然法(PML)、基于Poisson分布的最大后验概率法(PMAP)和基于Markov约束的Poisson分布的最大后验概率法(MPMAP)以及基于多画幅MPMAP超分辨力复原算法,并给出了单幅MPMAP法以及多画幅MPMAP超分辨力复原算法处理实际遥感图像数据源的结果,表明超分辨力图像处理技术在遥感成像领域具有良好发展和应用前景,有效实现了遥感图像中高频分辨力的复原。 相似文献
13.
14.
Zhou Liang Liu Feng Zhu Xiuchang 《电子科学学刊(英文版)》2006,23(2):310-313
This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject to Poisson-Markov distribution, then constructing the projecting convex based on MAP. According to the characteristics of compressed video, two different convexes are constructed based on integrating the inter-frame and intra-frame information in the wavelet-domain. The results of the experiment demonstrate that the new method not only outperforms the traditional algorithms on the aspects of PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error) and reconstruction vision effect, but also has the advantages of rapid convergence and easy extension. 相似文献
15.
Visual communications have played an important part in our daily life as a non-verbal way of conveying information using symbols, gestures and images. With the advances of technology, people can visually communicate with each other in a number of forms via digital communications. Recently Image Super-Resolution (ISR) with Deep Learning (DL) has been developed to reproduce the original image from its low-resolution version, which allows us to reduce the image size for saving transmission bandwidth. Although many benefits can be realised, the image transmission over wireless media experiences inevitable loss due to environment noise and inherent hardware issues. Moreover, data privacy is of vital importance, especially when the eavesdropper can easily overhear the communications over the air. To this end, this paper proposes a secure ISR protocol, namely Deep-NC, for the image communications based on the DL and Network Coding (NC). Specifically, two schemes, namely Per-Image Coding (PIC) and Per-Pixel Coding (PPC), are designed so as to protect the sharing of private image from the eavesdropper. Although the PPC scheme achieves a better performance than the PIC scheme for the entire image, it requires a higher computational complexity on every pixel of the image. In the proposed Deep-NC, the intended user can easily recover the original image achieving a much higher performance in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) than those at the eavesdropper. Simulation results show that an improvement of up to 32 dB in the PSNR can be obtained when the eavesdropper does not have any knowledge of the parameters and the reference image used in the mixing schemes. Furthermore, the original image can be downscaled to a much lower resolution for saving significantly the transmission bandwidth with negligible performance loss. 相似文献
16.
Recent deep learning models outperform standard lossy image compression codecs. However, applying these models on a patch-by-patch basis requires that each image patch be encoded and decoded independently. The influence from adjacent patches is therefore lost, leading to block artefacts at low bitrates. We propose the Binary Inpainting Network (BINet), an autoencoder framework which incorporates binary inpainting to reinstate interdependencies between adjacent patches, for improved patch-based compression of still images. When decoding a patch, BINet additionally uses the binarised encodings from surrounding patches to guide its reconstruction. In contrast to sequential inpainting methods where patches are decoded based on previous reconstructions, BINet operates directly on the binary codes of surrounding patches without access to the original or reconstructed image data. Encoding and decoding can therefore be performed in parallel. We demonstrate that BINet improves the compression quality of a competitive deep image codec across a range of compression levels. 相似文献
17.
18.
Hallucinating a photo-realistic frontal face image from a low-resolution (LR) non-frontal face image is beneficial for a series of face-related applications. However, previous efforts either focus on super-resolving high-resolution (HR) face images from nearly frontal LR counterparts or frontalizing non-frontal HR faces. It is necessary to address all these challenges jointly for real-world face images in unconstrained environment. In this paper, we develop a novel Cross-view Information Interaction and Feedback Network (CVIFNet), which simultaneously handles the non-frontal LR face image super-resolution (SR) and frontalization in a unified framework and interacts them with each other to further improve their performance. Specifically, the CVIFNet is composed of two feedback sub-networks for frontal and profile face images. Considering the reliable correspondence between frontal and non-frontal face images can be crucial and contribute to face hallucination in a different manner, we design a cross-view information interaction module (CVIM) to aggregate HR representations of different views produced by the SR and frontalization processes to generate finer face hallucination results. Besides, since 3D rendered facial priors contain rich hierarchical features, such as low-level (e.g., sharp edge and illumination) and perception level (e.g., identity) information, we design an identity-preserving consistency loss based on 3D rendered facial priors, which can ensure that the high-frequency details of frontal face hallucination result are consistent with the profile. Extensive experiments demonstrate the effectiveness and advancement of CVIFNet. 相似文献
19.
This paper proposes a fast super-resolution (SR) algorithm using content-adaptive two-dimensional (2D) finite impulse response (FIR) filters based on a rotation-invariant classifier. The proposed algorithm consists of a learning stage and an inference stage. In the learning stage, we cluster a sufficient number of low-resolution (LR) and high-resolution (HR) patch pairs into a specific number of groups using the rotation-invariant classifier, and choose a specific number of dominant clusters. Then, we compute the optimal 2D FIR filter(s) to synthesize a high-quality HR patch from an LR patch per cluster, and finally store the patch-adaptive 2D FIR filters in a dictionary. Also, we present a smart hierarchical addressing method for effective dictionary exploration in the inference stage. In the inference stage, the ELBP of each input LR patch is extracted in the same way as the learning stage, and the best matched FIR filter(s) to the input LR patch is found from the dictionary by the hierarchical addressing. Finally, we synthesize the HR patch by using the optimal 2D FIR filter. The experimental results show that the proposed algorithm produces better HR images than the existing SR methods, while providing fast running time. 相似文献