首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of environmental monitoring in Berlin polycyclic aromatic hydrocarbon (PAH) concentrations in air and household dust were measured inside 123 residences (and simultaneously in a sub group in the air outside the windows). The aim of this study was to determine exposure to PAHs in the environment influencing by several factors, for instance, motor vehicle traffic in a populous urban area. Indoor air samplings were carried out in two periods (winter and spring/summer) in smokers and non-smokers apartments. Benzo(a)pyrene (BaP) median values were 0.65 ng m(-3) (winter) and 0.27 ng m(-3) (spring/summer) in smokers' apartments and 0.25 ng m(-3) (winter) and 0.09 ng m(-3) (spring/summer) in the apartments of non-smokers. The median BaP content in ambient air was 0.10 ng m(-3) (maximum: 1.1 ng/m(-3)) with an indoor-outdoor mean concentration ratio of 0.9 in non-smoker households and 5.4 in smoker apartments. In household dust we obtained median values of 0.3 mg kg(-1) (range: 0.1-1.4 mg kg(-1)). We found a significant relation between indoor and outdoor values. Approximately 75% of the variance of indoor air values was caused by the corresponding BaP concentrations in the air outside the apartment windows. Otherwise a significant correlation between indoor air and household dust values cannot be found. Therefore, according to our results, it is suggested that the indoor PAH concentration in non-smoker apartments could be attributed mainly to vehicular emissions.  相似文献   

2.
In this study, the occurrence of persistent environmental contaminants room air samples from 59 apartments and 74 kindergartens in Berlin were tested in 2000 and 2001 for the presence of phthalates and musk fragrances (polycyclic musks in particular). These substances were also measured in household dust from 30 apartments. The aim of the study was to measure exposure levels in typical central borough apartments, kindergartens and estimate their effects on health. Of phthalates, dibutyl phthalate had the highest concentrations in room air, with median values of 1083 ng/m(3) in apartments and 1188 ng/m(3) in kindergartens. With around 80% of all values, the main phthalate in house dust was diethylhexyl phthalate, with median values of 703 mg/kg (range: 231-1763 mg/kg). No statistically significant correlation could be found between air and dust concentration. Musk compounds were detected in the indoor air of kindergartens with median values of 101 ng/m(3) [1,3,4,6,7,8-hexahydro-4,6,6,7,8,8- hexamethylcyclopenta-(g) 2-benzopyrane (HHCB)] and 44 ng/m(3) [7-acetyl-1,1,3,4,4,6-hexamethyl-tetraline (AHTN)] and maximum concentrations of up to 299 and 107 ng/m(3) respectively. In household dust HHCB and AHTN were detected in 63 and 83% of the samples with median values of 0.7 and 0.9 mg/kg (Maximum: 11.4 and 3.1 mg/kg) each. On comparing the above phthalate concentrations with presently acceptable tolerable daily intake values (TDI), we are talking about only a small average intake [di(2-ethylhexyl) phthalate and diethyl phthalate less than 1 and 8% of the TDI] by indoor air for children. The dominant intake path was the ingestion of foodstuffs. For certain subsets of the population, notably premature infants (through migration from soft polyvinyl chloride products), children and other patients undergoing medical treatment like dialysis, exchange transfusion, an important additional intake of phthalates must taken into account. PRACTICAL IMPLICATIONS: The phthalate and musk compounds load in a sample of apartments and kindergartens were low with a typical distribution pattern in air and household dust, but without a significant correlation between air and dust concentration. The largest source of general population exposure to phthalates is dietary. For certain subsets of the general population non-dietary ingestion (medical and occupational) is important.  相似文献   

3.
Mi YH  Norbäck D  Tao J  Mi YL  Ferm M 《Indoor air》2006,16(6):454-464
We investigated 10 naturally ventilated schools in Shanghai, in winter. Pupils (13-14 years) in 30 classes received a questionnaire, 1414 participated (99%). Classroom temperatures were 13-21 degrees C (mean 17 degrees C), relative air humidity was 36-82% (mean 56%). The air exchange rate was 2.9-29.4 ac/h (mean 9.1), because of window opening. Mean CO2 exceeded 1000 ppm in 45% of the classrooms. NO2 levels were 33-85 microg/m3 indoors, and 45-80 microg/m3 outdoors. Ozone were 1-9 microg/m3 indoors and 17-28 microg/m3 outdoors. In total, 8.9% had doctors' diagnosed asthma, 3.1% wheeze, 23.0% daytime breathlessness, 2.4% current asthma, and 2.3% asthma medication. Multiple logistic regression was applied. Observed indoor molds was associated with asthma attacks [odds ratio (OR) = 2.40: P < 0.05]. Indoor temperature was associated with daytime breathlessness (OR = 1.26 for 1 C; P < 0.001), and indoor CO2 with current asthma (OR = 1.18 for 100 ppm; P < 0.01) and asthma medication (OR = 1.15 for 100 ppm; P < 0.05). Indoor NO2 was associated with current asthma (OR = 1.51 for 10 microg/m3; P < 0.01) and asthma medication (OR = 1.45 for 10 microg/m3; P < 0.01). Outdoor NO2 was associated with current asthma (OR = 1.44 for 10 microg/m3; P < 0.05). Indoor and outdoor ozone was negatively associated with daytime breathlessness. In conclusion, asthma symptoms among pupils in Shanghai can be influenced by lack of ventilation and outdoor air pollution from traffic. Practical Implications Most urban schools in Asia are naturally ventilated buildings, often situated in areas with heavy ambient air pollution from industry or traffic. The classes are large, and window opening is the only way to remove indoor pollutants, but this results in increased exposure to outdoor air pollution. There is a clear need to improve the indoor environment in these schools. Building dampness and indoor mold growth should be avoided, and the concept of mechanical ventilation should be introduced. City planning aiming to situate new schools away from roads with heavy traffic should be considered.  相似文献   

4.
Particulate air pollution is significantly elevated during the winter in Christchurch, New Zealand, largely attributable to use of wood burners for domestic home heating, topography, and meteorological conditions. Polycyclic aromatic hydrocarbons (PAHs) are a key component of airborne particulate matter (PM) and urinary 1-hydroxypyrene (1-OHP) has previously been used to assess exposure of people to PAHs. We examined urinary 1-OHP in Christchurch male non-smoking schoolchildren (12-18 yr) on two occasions after high pollution events (48 and 72 microg PM(10)/m(3) 24-h average) and two occasions during periods of low pollution (19 and 12 microg PM(10)/m(3)). Concentrations of urinary 1-OHP were significantly elevated in the students during high pollution events (median (mean+/-SD) 0.043 (0.051+/-0.032) and 0.042 (0.060+/-0.092) micromol OHP/mol creatinine respectively) compared with low pollution periods (median (mean+/-SD) 0.019 (0.026+/-0.032) and 0.025 (0.028+/-0.018) micromol/mol creatinine respectively). The observed 1-OHP concentrations are at the lower end of those determined in children and non-occupationally exposed adults in international studies and suggest a generally low exposure to PAHs. The increased urinary 1-OHP concentrations following nights of elevated particulate concentrations in ambient air suggest increased exposure to ambient air pollution during winter time, and could potentially be used as a biomarker of exposure in this population.  相似文献   

5.
It is suspected that persons who work in indoor environments near busy roadways are exposed to elevated levels of air pollutants during working hours. This study evaluated the potential exposure and source contribution associated with traffic-related air pollution for workers (polishers and repairmen) in shoe stalls from each of 32 districts during working hours in Seoul, Korea. The shoe stalls have been located at very close distances to the busy roadways. In this study, shoe stall workers could be exposed to high levels of respirable suspended particulate (RSP), nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) from outdoor sources such as traffic exhaust, as well as indoor sources in the shoe stalls such as dust on the shoes, portable gas ranges, organic solvents, adhesives and shoe polish. Compounds of particular note included indoor mean concentrations of benzene, toluene, m/p-xylene and o-xylene were 0.732, 6.777, 4.080 and 1.302 mg/m(3), respectively, in all shoe stalls. Mean indoor/outdoor ratios for toluene and m/p-xylene concentrations were 54.52 and 20.84, respectively. The contribution of vehicle exhaust emissions to indoor air quality of shoe stalls was identified by means of correlating the relationships between simultaneously measured air pollutant concentrations indoors and outdoors. Unlike RSP and NO(2), indoor VOCs concentrations of shoe stalls mainly originated from indoor sources vs. outdoor sources.  相似文献   

6.
Indoor air quality at nine shopping malls in Hong Kong.   总被引:5,自引:0,他引:5  
Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.  相似文献   

7.
Lam KS  Chan FS  Fung WY  Lui BS  Lau LW 《Indoor air》2006,16(2):86-97
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. PRACTICAL IMPLICATIONS: This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.  相似文献   

8.
Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa,Mexico   总被引:6,自引:0,他引:6  
Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments.  相似文献   

9.
A feasibility study was undertaken to assess the suitability of South African rural villages due to be electrified, for the purposes of undertaking a large-scale study of the impact of reductions in indoor air pollution on acute lower respiratory infections. As part of the feasibility study, quantitative assessments of indoor air pollution in non-electrified and electrified dwellings were performed. Concurrent measurements were made of levels of respirable particulate matter (RSP-stationary), and carbon monoxide (CO) (personal on children <18 months), as well as a stationary co-located with RSP) over a 24-h period in 52 un-electrified and 53 electrified dwellings. The proportion of dwellings with a detectable 24-h concentration of RSP was significantly higher in un-electrified (48.1%) than electrified dwellings (24.5%) (chi(2) = 6.30 on 1 d.f., P = 0.012). In addition a Kruskal-Wallis test (adjusted for ties) showed that the distribution of RSP differed between un-electrified and electrified areas (Kruskal-Wallis chi(2) = 8.20 on 1 d.f., P = 0.014). In those dwellings where some RSP was detected, the amount was on average higher in the un-electrified areas (mean 162 microg/m(3), median 107 microg/m(3)) than in the electrified areas (mean 77 microg/m(3), median 37.5 microg/m(3)). Stationary (kitchen CO) levels in un-electrified dwellings ranged from 0.36 to 20.95 p.p.m. However, in electrified dwellings, kitchen levels ranged from 0 to 11.8 p.p.m. When mean concentrations of CO were compared between electrified and un-electrified dwellings using a two-sample t-test (on log-transformed data), there was overwhelming evidence (P = 0.0004) that the mean level of log (CO) in the kitchen was higher in the un-electrified areas (1.25 vs. 0.69) and also overwhelming evidence (P < 0.0001) that the mean level of log (CO) on the child was higher in the un-electrified areas (0.83 vs. 0.34). Of importance in terms of both policy and for a potential future large-scale study, is that measurable significant differences in indoor pollutants between electrified and un-electrified dwellings during summer were found in spite of only partial transition to electricity use for cooking in electrified villages. PRACTICAL IMPLICATIONS: It is estimated that at least two-thirds of all households in the developing world are still primary dependent on biomass fuels and coal. This situation applies to 59% of rural households in South Africa. In the last decade a program of providing electricity to three million homes has been underway in South Africa. Among others this intervention aims to reduce exposure to pollutants from burning biomass fuels and reduce detrimental health effects, especially in young children. This study provides scientific evidence that electrified homes in South African villages have lower levels of air pollution (RSP and CO) relative to their non-electrified counterparts.  相似文献   

10.
Poor households in Bangladesh depend heavily on wood, dung and other biomass fuels for cooking. This paper provides a detailed analysis of the implications for indoor air pollution (IAP), drawing on new 24-h monitoring data for respirable airborne particulates (PM10). A stratified sample of 236 households was selected in Dhaka and Narayanganj, with a particular focus on fuel use, cooking locations, structural materials, ventilation practices, and other potential determinants of exposure to IAP. At each household, PM10 concentrations in the kitchen and living room were monitored for a 24-h period during December, 2003-February, 2004. Concentrations of 300 microg/m3 or greater are common in our sample, implying widespread exposure to a serious health hazard. A regression analysis for these 236 households was then conducted to explore the relationships between PM10 concentrations, fuel choices and a large set of variables that describe household cooking and ventilation practices, structure characteristics and building materials. As expected, our econometric results indicate that fuel choice significantly affects indoor pollution levels: natural gas and kerosene are significantly cleaner than biomass fuels. However, household-specific factors apparently matter more than fuel choice in determining PM10 concentrations. In some biomass-burning households, concentrations are scarcely higher than in households that use natural gas. Our results suggest that cross-household variation is strongly affected by structural arrangements: cooking locations, construction materials, and ventilation practices. A large variation in PM10 was also found during the 24-h cycle within households. For example, within the 'dirtiest' firewood-using household in our sample, readings over the 24-h cycle vary from 68 to 4864 microg/m3. Such variation occurs because houses can recycle air very quickly in Bangladesh. After the midday meal, when ventilation is common, air quality in many houses goes from very dirty to reasonably clean within an hour. Rapid change also occurs within households: diffusion of pollution from kitchens to living areas is nearly instantaneous in many cases, regardless of internal space configuration, and living-area concentrations are almost always in the same range as kitchen concentrations. By implication, exposure to dangerous indoor pollution levels is not confined to cooking areas. To assess the broader implications for poor Bangladeshi households, we extrapolate our regression results to representative 600 household samples from rural, peri-urban and urban areas in six regions: Rangpur in the north-west, Sylhet in the north-east, Rajshahi and Jessore in the west, Faridpur in the center, and Cox's Bazar in the south-east. Our results indicate great geographic variation, even for households in the same per capita income group. This variation reflects local differences in fuel use and, more significantly, construction practices that affect ventilation. For households with per capita income 相似文献   

11.
Hairdressers are exposed to particulate matter (PM), a known air pollutant linked to adverse health effects. Still, studies on occupational PM exposures in hair salons are sparse. We characterized indoor air PM concentrations in three salons primarily serving an African/African American (AA) clientele, and three Dominican salons primarily serving a Latino clientele. We also assessed the performance of low-cost sensors (uRAD, Flow, AirVisual) by comparing them to high-end sensors (DustTrak) to conduct air monitoring in each salon over 3 days to quantify work shift concentrations of PM2.5, respirable PM (RPM), and PM10. We observed high spatial and temporal variability in 30-min time-weighted average (TWA) RPM concentrations (0.18–5518 μg/m3). Readings for the uRAD and AirVisual sensors were highly correlated with the DustTrak (R2 = 0.90–0.99). RPM 8-hour TWAs ranged from 18 to 383 µg/m3 for AA salons, and 9–2115 µg/m3 for Dominican salons. Upper 95th percentiles of daily RPM exposures ranged from 439 to 2669 µg/m3. The overall range of 30-min TWA PM2.5 and PM10 concentrations was 0.13–5497 and 0.36-,541 μg/m3, respectively. Findings suggest that hairdressers could be overexposed to RPM during an 8-hour shift. Additional comprehensive monitoring studies are warranted to further characterize temporal and spatial variability of PM exposures in this understudied occupational population.  相似文献   

12.
Several studies among adult populations showed that an array of outdoor and indoor sources of particles emissions contributed to personal exposures to atmospheric particles, with tobacco smoke playing a prominent role (J. Expo. Anal. Environ. Epidemiol. 6 (1996) 57, Environ. Int. 24 (1998) 405, Arch. Environ. Health 54 (1999) 95). The Vesta study was carried out to assess the role of exposure to traffic emissions in the development of childhood asthma. In this paper, we present data on 68 children aged 8-14 years, living in the metropolitan areas of Paris (n = 30), Grenoble (n = 15) and Toulouse (n = 23), France, who continuously carried, over 48 h, a rucksack that contained an active PM2.5 sampler. Data about home indoor sources were collected by questionnaires. In parallel, daily concentrations of PM10 in ambient air were monitored by local air quality networks. The contribution of indoor and outdoor factors to personal exposures was assessed using multiple linear regression models. Average personal exposure across all children was 23.7 microg/m3 (S.D. = 19.0 microg/m3), with local means ranging from 18.2 to 29.4 microg/m3. The final model explains 36% of the total between-subjects variance, with environmental tobacco smoke contributing for more than a third to this variability; presence of pets at home, proximity of the home to urban traffic emissions, and concomitant PM10 ambient air concentrations were the other main determinants of personal exposure.  相似文献   

13.
To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM(10) (particulate matters with aerodynamic diameter less than 10 microm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO(2)) and sulfur dioxide (SO(2)). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM(10), TBC, CO and NO(2) at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM(10) and TBC. The elevated PM(10) concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM(10) concentration at poultry stalls was higher than the HKIAQO standard of 180 microg/m(3), and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m(3), which was above the HKIAQO standard of 1000 CFU/m(3). The bacteria levels at other three stalls were all below the HKIAQO standard. Statistical analysis indicated that there were no significant differences among the four stalls for CO, NO(x) and SO(2).  相似文献   

14.
Occupational exposure to trihalomethanes in indoor swimming pools   总被引:3,自引:0,他引:3  
The study evaluated occupational exposure to trihalomethanes (THMs) in indoor swimming pools. Thirty-two subjects, representing the whole workforce employed in the five public indoor swimming pools in the city of Modena (Northern Italy) were enrolled. Both environmental and biological monitoring of THMs exposure were performed. Environmental concentrations of THMs in different areas inside the swimming pools (at the poolside, in the reception area and in the engine-room) were measured as external exposure index, while individual exposure of swimming pool employees was estimated by THMs concentration in alveolar air. The levels of THMs observed in swimming pool water ranged from 17.8 to 70.8 microg/l; the mean levels of THMs in ambient air were 25.6+/-24.5 microg/m3 in the engine room, 26.1+/-24.3 microg/m3 in the reception area and 58.0+/-22.1 microg/m3 at the poolside. Among THMs, only chloroform and bromodichloromethane were always measured in ambient air, while dibromochloromethane was detected in ambient air rarely and bromoform only once. Biological monitoring results showed a THMs mean value of 20.9+/-15.6 microg/m3. Statistically significant differences were observed according to the main job activity: in pool attendants, THMs alveolar air were approximately double those observed in employees working in other areas of the swimming pools (25.1+/-16.5 microg/m3 vs. 14.8+/-12.3 microg/m3, P < 0.01). THMs in alveolar air samples were significantly correlated with THMs concentrations in ambient air (r = 0.57; P < 0.001). Indoor swimming pool employees are exposed to THMs at ambient air levels higher than the general population. The different environmental exposure inside the swimming pool can induce a different internal dose in exposed workers. The correlation found between ambient and alveolar air samples confirms that breath analysis is a good biological index of occupational exposure to these substances at low environmental levels.  相似文献   

15.
Air flow and the associated indoor carbon dioxide concentrations have been extensively monitored in 62 classrooms of 27 naturally ventilated schools in Athens, Greece. The specific ventilation patterns as well as the associated carbon dioxide concentrations, before, during and after the teaching period are analysed in detail. During the teaching period, only 23% of the measured classrooms presented a flow rate higher than the recommended value of 8 l/p/s while the mean daily fluctuation was close to 40%. About, 52% of the classrooms presented a mean indoor CO2 concentration higher than 1000 ppm. The specific experimental data have been compared against existing ventilation rates and carbon dioxide concentrations using published information from 287 classrooms of 182 naturally ventilated schools and 900 classrooms from 220 mechanically ventilated schools. The relation between the air flow rates and the corresponding indoor carbon dioxide is analysed and then compared to the existing data from naturally and mechanically ventilated schools. It is found that all three data sets present a CO2 concentration equal to 1000 ppm for air flows around 8 l/p/s. Specific adaptive actions to improve the indoor environmental quality have been recorded and the impact of indoor and ambient temperatures as well as of the carbon dioxide concentration on window opening is analysed in detail. A clear relation is found, between the indoor temperature at which the adapting action takes place and the resulting air flow rate. In parallel, a statistically significant relation between window opening and the indoor–outdoor temperature difference has been established.  相似文献   

16.
Concern for the exposure of children attending schools located near busy roadways to toxic, traffic‐related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air‐conditioning (HVAC) filtration systems for near‐road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31–66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74–97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49–96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention.  相似文献   

17.
Cao JJ  Lee SC  Chow JC  Cheng Y  Ho KF  Fung K  Liu SX  Watson JG 《Indoor air》2005,15(3):197-204
Six residences were selected (two roadside, two urban, and two rural) to evaluate the indoor-outdoor characteristics of PM(2.5) (aerodynamic diameter <2.5 microm) carbonaceous species in Hong Kong during March and April 2004. Twenty-minute-averaged indoor and outdoor PM(2.5) concentrations were recorded by DustTrak samplers simultaneously at each site for 3 days to examine diurnal variability of PM(2.5) mass concentrations and their indoor-to-outdoor (I/O) ratios. Daily (24-h average) indoor/outdoor PM(2.5) samples were collected on pre-fired quartz-fiber filters with battery-powered portable mini-volume samplers and analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The average indoor and outdoor concentrations of 24 h PM(2.5) were 56.7 and 43.8 microg/m(3), respectively. The short-term PM(2.5) profiles indicated that the penetration of outdoor particles was an important contributor to indoor PM(2.5), and a household survey indicated that daily activities were also sources of episodic peaks in indoor PM(2.5). The average indoor OC and EC concentrations of 17.1 and 2.8 microg/m(3), respectively, accounted for an average of 29.5 and 5.2%, respectively, of indoor PM(2.5) mass. The average indoor OC/EC ratios were 5.8, 9.1, and 5.0 in roadside, urban, and rural areas, respectively; while average outdoor OC/EC ratios were 4.0, 4.3, and 4.0, respectively. The average I/O ratios of 24 h PM(2.5), OC, and EC were 1.4, 1.8, and 1.2, respectively. High indoor-outdoor correlations (r(2)) were found for PM(2.5) EC (0.96) and mass (0.81), and low correlations were found for OC (0.55), indicative of different organic carbon sources indoors. A simple model implied that about two-thirds of carbonaceous particles in indoor air are originated from outdoor sources. PRACTICAL IMPLICATIONS: Indoor particulate pollution has received more attentions in Asia. This study presents a case study regarding the fine particulate matter and its carbonaceous compositions at six residential homes in Hong Kong. The characteristics and relationship of atmospheric organic and elemental carbon were discussed indoors and outdoors. The distribution of eight carbon fractions was first reported in indoor samples to interpret potential sources of indoor carbonaceous particles. The data set can provide significant scientific basis for indoor air quality and epidemiology study in Hong Kong and China.  相似文献   

18.
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. PRACTICAL IMPLICATIONS: This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.  相似文献   

19.
The high levels of air pollutants over the North-Western Mediterranean (NWM) exceed the thresholds set in current air quality regulations. They demand a detailed diagnosis of those areas where the exceedances of thresholds related to human health are found. In this sense, there is a need for modelling studies for the specific area of the NWM that take into account the annual cycle to address the diagnosis of air pollution. A new approach to the modelling of air quality in the NWM has been adopted by combining the WRF-EMICAT-CMAQ-DREAM modelling system to diagnose the current status of the levels of photochemical air pollution (focusing on ozone, O(3); nitrogen dioxide, NO(2); carbon monoxide, CO; and particulate matter, PM10) in the area during an annual cycle (year 2004). The complexity of the area of study requires the application of high spatial and temporal resolution (2 km and 1 h). The annual simulations need to cover the complex different meteorological situations and types of episodes of air pollution in the area of study. The outputs of the modelling system are evaluated against observations from 52 meteorological and 59 air quality stations belonging to the Environmental Department of the Catalonia Government (Spain), which involve a dense and accurate spatial distribution of stations in the territory (32,215 km(2)). The results indicate a good behaviour of the model in both coastal and inland areas of the NWM, with a slight trend to the overestimation of tropospheric O(3) concentrations and the underestimation of other photochemical pollutants (NO(2), CO and PM10). The modelling diagnosis indicates that the main air quality-related problems in the NWM are the exceedances of the 1-hr O(3) information threshold set in the Directive 2002/3/EC (180 microg m(-3)) as a consequence of the transport of O(3) precursors downwind the Barcelona Greater Area (BGA); and the exceedances of the annual value for the protection of human health for NO(2) and PM10 (40 microg m(-3), Directive 1999/30/EC), both in the BGA, as a consequence of the high traffic-related emissions.  相似文献   

20.
Park E  Lee K 《Indoor air》2003,13(3):253-259
Biomass fuel is the most common energy source for cooking and space heating in developing countries. Biomass fuel combustion causes high levels of indoor air pollutants including particulates and other combustion by-products. We measured indoor air quality in 23 houses with a wood burning stove in rural residential areas of Costa Rica. Daily PM2.5, PM10 and CO concentrations, and particle size distribution were simultaneously measured in the kitchen. When a wood burning stove was used during the monitoring period, average daily PM2.5 and PM10 concentrations were 44 and 132 microg/m3, respectively. Average CO concentrations were between 0.5 and 3.3 ppm. All houses had a particle size distribution of either one or two peaks at around 0.7 and 2.5 microm aerodynamic diameters. The particulate levels increased rapidly during cooking and decreased quickly after cooking. The maximum peak particulate levels ranged from 310 to 8170 microg/m3 for PM2.5 and from 500 to 18900 microg/m3 for PM10 in all houses. Although the 24-h particulate levels in this study are lower than the National Ambient Air Quality Standards of PM2.5 and PM10, it is important to note that people, especially women and children, are exposed to extremely high levels of particulates during cooking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号