首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cardiotoxicity is a common side effect of a large variety of drugs that is often caused by off-target human ether-à-go-go-related gene (hERG) potassium channel blockade. In this study, we designed and synthesized a series of derivatives of the class III antiarrhythmic agent E-4031. These compounds where evaluated in a radioligand binding assay and automated patch clamp assay to establish structure-activity relationships (SAR) for their inhibition of the hERG K(+) channel. Structural modifications of E-4031 were made by altering the peripheral aromatic moieties with a series of distinct substituents. Additionally, we synthesized several derivatives with a quaternary nitrogen and modified the center of the molecule by introduction of an additional nitrogen and deletion of the carbonyl oxygen. Some modifications caused a great increase in affinity for the hERG K(+) channel, while other seemingly minor changes led to a strongly diminished affinity. Structures with quaternary amines carrying an additional aromatic moiety were found to be highly active in radioligand binding assay. A decrease in affinity was achieved by introducing an amide functionality in the central scaffold without directly interfering with the pK(a) of the essential basic amine. The knowledge gained from this study could be used in early stages of drug discovery and drug development to avoid or circumvent hERG K(+) channel blockade, thereby reducing the risk of cardiotoxicity, related arrhythmias and sudden death.  相似文献   

4.
Based on a medicinal-chemistry-guided approach, three novel series of druglike cycloalkyl-annelated pyrazoles were synthesized and display high affinity (pKi>8) for the sigma1 receptor. Structure-affinity relationships were established, and the different scaffolds were optimized with respect to sigma1 binding and selectivity versus the sigma2 receptor and the hERG channel, resulting in selective compounds that have Ki values (for sigma1) in the subnanomolar range. Selected compounds were screened for cytochrome P450 inhibition (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4), metabolic stability (rat and human liver microsomes), and cell-membrane permeability (Caco-2). They showed favorable in vitro ADME properties as well as favorable calculated druglike and experimental physicochemical properties. Furthermore, compounds 7 f and 17 a, for example, displayed high selectivity (affinity) for the sigma1 receptor against a wide range of other receptors (>60). With these valuable tool compounds in hand, we are further exploring the role of the sigma1 receptor in relevant animal models corresponding to such medicinal indications as drug abuse, pain, depression, anxiety, and psychosis.  相似文献   

5.
6.
Insulin secretion from pancreatic β-cells is a complex process, involving the integration and interaction of multiple external and internal stimuli, in which glucose plays a major role. Understanding the physiology leading to insulin release is a crucial step toward the identification of new targets. In this study, we evaluated the presence of insulinotropic metabolites in Naja kaouthia snake venom. Only one fraction, identified as cardiotoxin-I (CTX-I) was able to induce insulin secretion from INS-1E cells without affecting cell viability and integrity, as assessed by MTT and LDH assays. Interestingly, CTX-I was also able to stimulate insulin secretion from INS-1E cells even in the absence of glucose. Although cardiotoxins have been characterized as potent hemolytic agents and vasoconstrictors, CTX-I was unable to induce direct hemolysis of human erythrocytes or to induce potent vasoconstriction. As such, this newly identified insulin-releasing toxin will surely enrich the pool of existing tools to study β-cell physiology or even open a new therapeutic avenue.  相似文献   

7.
TWIK-related acid-sensitive K(+) (K(2P) 9.1, TASK-3) ion channels have the capacity to regulate the activity of neuronal pathways by influencing the resting membrane potential of neurons on which they are expressed. The central nervous system (CNS) expression of these channels suggests potential roles in neurologic disorders, and it is believed that the development of TASK-3 antagonists could lead to the therapeutic treatment of a number of neurological conditions. While a therapeutic potential for TASK-3 channel modulation exists, there are only a few documented examples of potent and selective small-molecule channel blockers. Herein, we describe the discovery and lead optimization efforts for a novel series of TASK-3 channel antagonists based on a 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine high-throughput screening lead from which a subseries of potent and selective inhibitors were identified. One compound was profiled in detail with respect to its physical properties and demonstrated pharmacological target engagement as indicated by its ability to modulate sleep architecture in rodent electroencephalogram (EEG) telemetry models.  相似文献   

8.
In this study we followed a new approach to analyze molecular substructures required for hERG channel blockade. We designed and synthesized 40 analogues of dofetilide ( 1 ), a potent hERG potassium channel blocker, and established structure–activity relationships (SAR) for their interaction with this important cardiotoxicity‐related off‐target. Structural modifications to dofetilide were made by diversifying the substituents on the phenyl rings and the protonated nitrogen and by varying the carbon chain length. The analogues were evaluated in a radioligand binding assay and SAR data were derived with the aim to specify structural features that give rise to hERG toxicity.  相似文献   

9.
10.
11.
12.
13.
Blaazer AR  Smid P  Kruse CG 《ChemMedChem》2008,3(9):1299-1309
Agonist activation of central 5-HT(2A) receptors results in diverse effects, such as hallucinations and changes of consciousness. Recent findings indicate that activation of the 5-HT(2A) receptor also leads to interesting physiological responses, possibly holding therapeutic value. Selective agonists are needed to study the full therapeutic potential of this receptor. 5-HT(2A) ligands with agonist profiles are primarily derived from phenylalkylamines, indolealkylamines, and certain piperazines. Of these, phenylalkylamines, most notably substituted phenylisopropylamines, are considered the most selective agonists for 5-HT(2) receptors. This review summarizes the structure-activity relationships (SAR) of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. Selectivity is a central theme, as is selectivity for the 5-HT(2A) receptor and for its specific signaling pathways. SAR data from receptor affinity studies, functional assays, behavioral drug discrimination as well as human studies are discussed.  相似文献   

14.
15.
The proteasome regulates diverse intracellular processes, including cell-cycle progression, antigen presentation, and inflammatory response. Selective inhibitors of the proteasome have great therapeutic potential for the treatment of cancer and inflammatory disorders. Natural cyclic peptides TMC-95A and B represent a new class of noncovalent, selective proteasome inhibitors. To explore the structure-activity relationship of this class of proteasome inhibitors, a series of TMC-95A/B analogues were prepared and analyzed. We found that the unique enamide functionality at the C8 position of TMC-95s can be replaced with a simple allylamide. The asymmetric center at C36 that distinguishes TMC-95A from TMC-95B but which necessitates a complicated separation of the two compounds can be eliminated. Therefore, these findings could lead to the development of more accessible simple analogues as potential therapeutic agents.  相似文献   

16.
The interaction of the herbicides acifluorfen and paraquat with the photosynthetic reaction center from Rhodobacter sphaeroides has been studied by NMR relaxation measurements. Interaction in aqueous solution has been demonstrated by evaluating motional features of the bound form through cross-relaxation terms of protons at fixed distances on the herbicides. Contributions to longitudinal nonselective relaxation rates different from the proton-proton dipolar relaxation were inferred, most probably due to paramagnetic effects originating from the high-spin nonheme Fe(II) ion in the reaction center. Paramagnetic contributions to proton relaxation rates were converted into distance constraints in order to build a model for the interaction. The models place paraquat in the QB site, where most herbicides interact, in agreement with docking calculations, whereas acifluorfen was placed between the metal and the QB site, as also demonstrated by the induced paramagnetic shifts. Acifluorfen could therefore act to break the electron-transfer pathway between the QA and QB sites.  相似文献   

17.
Subtype-selective estrogens are of increasing importance as tools used to unravel physiological roles of the estrogen receptors, ERalpha and ERbeta, in various species. Although human ERalpha and ERbeta differ by only two amino acids within the binding pockets, we and others recently succeeded in generating subtype-selective agonists. We have proposed that the selectivity of the steroidal compounds 16alpha-lactone-estradiol (16alpha-LE(2), hERalpha selective) and 8beta-vinyl-estradiol (8beta-VE(2), hERbeta selective) is based on the interaction of certain substituents of these compounds with essentially one amino acid in the respective ER binding pockets. For in vitro and ex vivo pharmacological experiments with these compounds we intended to use bovine tissues available from slaughterhouses in larger quantities. Using homology modeling techniques we determined that the amino acid conferring high hERbeta-selectivity to 8beta-VE(2) is not exchanged between human and bovine ERalpha and bovine ERbeta. Thus, we predicted our steroidal hERbeta-selective compound to exhibit only weak agonistic activity at bERbeta and that bovine tissue is therefore not suited for investigation of ERbeta functions. The situation is presumably identical for pig, sheep, and the common marmoset, whereas rats, mice, and rhesus macaques are appropriate animal models to study pharmacological effects of 8beta-VE(2) in vivo. This prediction was confirmed in transactivation studies assessing estradiol (E(2)) and the two subtype-selective ligands on bovine ERbeta and on a series of hERalpha and hERbeta with mutations in their respective ligand-binding pockets. We have shown that the detailed understanding of the interactions of a compound with its target protein enables the identification of relevant species for pharmacological studies.  相似文献   

18.
19.
The introduction of a hemisuccinate group at the 21-position of the passive antiglucocorticoid 21OH-6,19OP leads to a compound (21HS-6,19OP) with a notable activity profile toward the glucocorticoid receptor (GR). In contrast to the parent steroid, 21HS-6,19OP behaves as a pure agonist of GR activity in direct transactivation assays. However, the apoptotic effects of 21HS-6,19OP show that the effect depends on cell type: while 21HS-6,19OP is a pure agonist in L929 mouse fibroblasts, in thymocytes 21HS-6,19OP had significant antiglucocorticoid activity. This tissue-specific activity makes 21HS-6,19OP a novel selective GR modulator. To investigate the molecular basis of action of 21HS-6,19OP, we carried out molecular dynamics simulations (6 ns) of the GR ligand binding domain (LBD) complexed with 21HS-6,19OP. Our results indicate that the hemisuccinate moiety may play a key role in stabilizing the active conformation of the receptor dimerization interface, reverting the changes observed with the antagonist 21OH-6,19OP. Other changes in regions of the GR related to cofactor recruitment (possibly tissue-specific), could explain this particular activity profile.  相似文献   

20.
The mechanism of the conversion of (E,E)-farnesyl diphosphate (FPP, 1a) to aristolochene (6) catalyzed by aristolochene synthase from Penicillium roqueforti has been proposed to proceed through the neutral intermediate germacrene A (4a). However, much of the experimental evidence is also in agreement with a mechanism in which germacrene A is not an intermediate in the predominant mechanism that leads to the formation of aristolochene, but rather an off-pathway product that is formed in a side reaction. Hence, to elucidate the mechanism of FPP cyclisation the substrate analogue 2-fluoroFPP (1b) was synthesized, and upon incubation with aristolochene synthase was converted to a single pentane extractable product according to GC-MS analysis. On the basis of NMR analyses this product was identified as 2-fluorogermacrene A (4b). Variable temperature (1)H NMR spectroscopy indicated the existence of two conformers of 4b that were in slow exchange at -60 degrees C, while at 90 degrees C the two isomers gave rise to averaged NMR signals. In the major isomer (approximately 75%) the methyl groups on C3 and C7 were most likely in the down-down orientation as had been observed for other (E,E)-germacranes. This work suggests that after an initial concerted cyclisation of FPP to germacryl cation deprotonation leads to the formation of germacrene A, and provides compelling evidence that germacrene A is indeed an on-pathway product of catalysis by aristolochene synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号