首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Volatiles emitted by plants in response to feeding by Lygus species were tested in neurophysiological, behavioral, and parasitism trials with Anaphes iole, an egg parasitoid of Lygus. Electroantennogram analyses indicated that A. iole antennae responded to most herbivore-induced plant volatiles (HIPVs) tested and that females were usually more responsive than males. Antennal responses to (Z)-3-hexenyl acetate and methyl salicylate were among the strongest. Behavioral assays in a four-arm olfactometer demonstrated that response of female wasps to (Z)-3-hexenyl acetate varied greatly depending on preconditioning regime. Preconditioning wasps to complex host-plant odors led to stronger preference than did a single preconditioning stimulus, i.e., (Z)-3-hexenyl acetate. In a horizontal wind tunnel, female wasps were attracted by methyl salicylate and alpha-farnesene. Parasitism of Lygus lineolaris eggs by A. iole in a cotton field was greater when the eggs were associated with (Z)-3-hexenyl acetate or alpha-farnesene than with controls. Overall, the results of this study show that A. iole can perceive a variety of plant volatiles released after its host damages plants, that the degree of associative learning in A. iole can be manipulated based on preconditioning regime, and that single synthetic HIPVs are attractive to A. iole and can be used to increase attack rates on host eggs. Therefore, it appears that HIPVs have potential for use in suppression of Lygus population densities.  相似文献   

2.
In-flight orientation of the braconid Aphidius ervi in response to volatiles released from broad bean plants infested by the pea aphid, Acyrthosiphon pisum, was studied in a no-choice wind-tunnel bioassay. The role of aphid infestation level and duration, systemic production of volatiles by insect-free parts of the plant, and the specificity of aphid-induced volatiles on the flight behavior of the foraging female parasitoids were investigated. The upper insect-free part of a three-leaved broad bean plant, which was basally infested by a population of 40 A. pisum, released synomones detectable by A. ervi females after at least 48–72 hr of infestation, resulting in both significant increases in oriented flights and landings on the source compared with uninfested control plants. This suggests that volatiles involved in host-location by A. ervi are systemically released by broad bean plants either in response to circulation of aphid saliva, circulation of saliva-induced bioactive elicitors, or circulation of the synomones themselves. Air entrainment extracts of volatiles collected from a broad bean plant infested by the nonhost Aphis fabae or an uninfested broad bean plant elicited few oriented flights and landing responses by female parasitoids. These extracts were significantly less attractive than extracts collected from a broad bean plant infested by the host A. pisum, indicating the specificity of synomones elicited by different aphid species on the same plant species.  相似文献   

3.
Herbivore feeding induces plants to emit volatiles that are detectable and reliable cues for foraging parasitoids, which allows them to perform oriented host searching. We investigated whether these plant volatiles play a role in avoiding parasitoid competition by discriminating parasitized from unparasitized hosts in flight. In a wind tunnel set-up, we used mechanically damaged plants treated with regurgitant containing elicitors to simulate and standardize herbivore feeding. The solitary parasitoid Cotesia rubecula discriminated among volatile blends from Brussels sprouts plants treated with regurgitant of unparasitized Pieris rapae or P. brassicae caterpillars over blends emitted by plants treated with regurgitant of parasitized caterpillars. The gregarious Cotesia glomerata discriminated between volatiles induced by regurgitant from parasitized and unparasitized caterpillars of its major host species, P. brassicae. Gas chromatography-mass spectrometry analysis of headspace odors revealed that cabbage plants treated with regurgitant of parasitized P. brassicae caterpillars emitted lower amounts of volatiles than plants treated with unparasitized caterpillars. We demonstrate (1) that parasitoids can detect, in flight, whether their hosts contain competitors, and (2) that plants reduce the production of specific herbivore-induced volatiles after a successful recruitment of their bodyguards. As the induced volatiles bear biosynthetic and ecological costs to plants, downregulation of their production has adaptive value. These findings add a new level of intricacy to plant–parasitoid interactions.  相似文献   

4.
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.  相似文献   

5.
The blend of volatile compounds emitted by bean plants (Phaseolus vulgaris) infested with greenhouse whitefly (Trialeurodes vaporariorum) has been studied comparatively with undamaged plants and whiteflies themselves. Collection of the volatiles and analysis by gas chromatography revealed more than 20 compounds produced by plants infested with whitefly. Of these, 4 compounds, (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, 3-octanone, and one unidentified compound were emitted at higher levels than from the undamaged control plants. Synthetic (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, or 3-octanone all elicited a significant increase in oriented flight and landing on the source by the parasitoid, Encarsia formosa, in wind tunnel bioassays. Two-component mixtures of the compounds and the three-component mixture all elicited a similar or, in most cases, a better response by the parasitoid, the most effective being a mixture of (Z)-3-hexen-1-ol and 3-octanone. These results demonstrate that E. formosa uses volatiles from the plant-host complex as olfactory cues for host location.  相似文献   

6.
To elucidate the role of the plant lipoxygenase (LOX)/lyase pathway for host search behavior of two parasitic wasps attacking herbivorous larvae, an Arabidopsis mutant (all84) was isolated with a mutation somewhere in the LOX/lyase pathway. Detached leaves of the mutant were shown to release less (Z)-3-hexenal, a first green leaf volatile (GLV) product of the LOX/lyase pathway. The braconid larval parasitoids studied, Cotesia glomerata and Cotesia plutella, differ in their ability to discriminate among plant volatiles induced by feeding of lepidopteran hosts and nonhosts: C. plutella only responds to plant volatiles induced by hosts (Plutella larvae), whereas the response by the more generalist C. glomerata is not host specific. The Arabidopsis mutant all84 infested by Pieris larvae was less attractive to C. glomerata than Arabidopsis wild type (wt) infested by the host larvae. C. glomerata was attracted by two of the GLV biosynthesized through the LOX/lyase pathway, (E)-2-hexenal and (Z)-3-hexenyl acetate. However, attraction of C. plutellae to volatiles from Plutella-infested all84 plants did not differ from attraction to host-infested wt Arabidopsis. Both wasp species were arrested to the respective host-infested edge of the wt leaf by showing characteristic antennal searching behavior on the edge. In C. glomerata, the duration of this searching behavior at the infested leaf edge was significantly shorter on all84 plants than on wt plants. By contrast, the duration of the searching behavior of C. plutellae on the host-infested leaf edge of all84 was not significantly different from that on the wt leaf. These data suggest that the LOX/lyase pathway is directly involved in the production of attractants and arrestants important for host search behavior of the more generalist C. glomerata, but not for the specialist C. plutellae.  相似文献   

7.
The emission of inducible volatile organic compounds (VOCs), i.e., inducible terpenes, and green leaf volatiles (GLVs), is a common response of plants to herbivore attack. These VOCs are involved in the orientation of natural enemies, i.e., predators and parasitoids, toward their herbivore prey or hosts (indirect defense of plants). Terpenes and some GLVs are readily oxidized by ozone (O3), an important oxidant of the low atmosphere and predicted to increase as a result of anthropogenic activity. It has been recently reported that O3 degradation of terpenes and GLVs does not affect signaling in two selected tritrophic systems. Natural enemies may have learned to use oxidation products that are more stable in nature to locate their prey. To understand the role of these compounds on the tritrophic system Brassica oleracea–Plutella xylostella–Cotesia plutellae, we assessed the preference of wasps to different combinations of cabbage VOCs (intact vs. herbivore-induced and herbivore-induced vs. herbivore-induced VOCs) in the presence or absence of O3. We found that C. plutellae preferred P. xylostella-damaged plants at 0 and 120 nl l−1 O3 to intact plants at 0 nl l−1 O3. However, wasps preferred P. xylostella-damaged plants at 0 nl l−1 to P. xylostella-damaged plants at 120 nl l−1 O3. The results suggest that compounds other than terpenes and GLVs are crucial for the orientation of the wasps, but terpenes and GLVs contribute to the behaviorally active VOC blend of herbivore-damaged cabbages by increasing their attraction to them. The products resulting from oxidation of terpenes and GLVs do not seem to play a role in the host location process as speculated previously.  相似文献   

8.
Many plant species defend themselves against herbivorous insects indirectly by producing volatiles in response to herbivory. These volatiles attract carnivorous enemies of the herbivores. Research on the model plant Arabidopsis thaliana (L.) Heynh. has contributed considerably to the unraveling of signal transduction pathways involved in direct plant defense mechanisms against pathogens. Here, we demonstrate that Arabidopsis is also a good candidate for studying signal transduction pathways involved in indirect defense mechanisms by showing that: (1) Adult females of Cotesia rubecula, a specialist parasitic wasp of Pieris rapae caterpillars, are attracted to P. rapae-infested Arabidopsis plants. (2) Arabidopsis infested by P. rapae emits volatiles from several major biosynthetic pathways, including terpenoids and green leaf volatiles. The blends from herbivore-infested and artificially damaged plants are similar. However, differences can be found with respect to a few components of the blend, such as two nitriles and the monoterpene myrcene, that were produced exclusively by caterpillar-infested plants, and methyl salicylate, that was produced in larger amounts by caterpillar-infested plants. (3) Genes from major biosynthetic pathways involved in volatile production are induced by caterpillar feeding. These include AtTPS10, encoding a terpene synthase involved in myrcene production, AtPAL1, encoding phenylalanine ammonia-lyase involved in methyl salicylate production, and AtLOX2 and AtHPL, encoding lipoxygenase and hydroperoxide lyase, respectively, both involved in the production of green leaf volatiles. AtAOS, encoding allene oxide synthase, involved in the production of jasmonic acid, also was induced by herbivory.  相似文献   

9.
Host location cues for parasitic wasps that attack bark beetle larvae concealed under the bark of spruce trees were analyzed by collecting odor samples from entrance holes into the bark beetle galleries, isolated larvae, and pupal chambers with or without bark beetle larvae. Odor samples were collected by dynamic headspace adsorptions on Porapak Q or static adsorptions by using solid-phase microextraction (SPME) with Carbowax–divinylbenzene as the adsorbing phase. Samples were analyzed by coupled gas chromatographic–electroantennographic detection (GC-EAD) and GC-mass spectrometry (GC-MS). The antennae of Rhopalicus tutela females responded primarily to oxygenated monoterpenes that are typical for damaged host trees. These compounds are attractive to bark beetle parasitoids in long-range host location, suggesting that they are used in both long- and short-range host location. No differences could be detected between samples collected from pupal chambers with or without mature larvae. Larvae outside pupal chambers emitted low quantities of the same compounds present in empty pupal chambers. The data support the hypothesis that volatiles used by host foraging parasitoids arise from the interaction between introduced microorganisms and the bark and/or vascular tissue of the host tree rather than from the bark beetle larvae.  相似文献   

10.
Carnivorous arthropods use volatile infochemicals emitted from prey-infested plants in their foraging behavior. Although several volatile components are common among plant species, the compositions differ among prey–plant complexes. Studies showed that the predatory mite Neoseiulus womersleyi is attracted only to previously experienced plant volatiles. In this study, we identified the attractant components in prey-induced plant volatiles of two prey–plant complexes. N. womersleyi reared on Tetranychus kanzawai-infested tea leaves showed significant preference for a mixture of three synthetic compounds [mimics of the T. kanzawai-induced tea leaves volatiles: (E)-β-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and (E,E)-α-farnesene] at a level comparable to that for T. kanzawai-induced tea plant volatiles. However, mixtures lacking any of these compounds did not attract the predatory mites. Likewise, N. womersleyi reared on T. urticae-infested kidney bean plants showed a significant preference for a mixture of four synthetic compounds [mimics of the T. urticae-induced kidney bean volatiles: DMNT, methyl salicylate (MeSA), β-caryophyllene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene] at a level comparable to that for T. urticae-induced kidney bean volatiles. The absence of any of the four compounds resulted in no attraction. These results indicate that N. womersleyi can use at least four volatile components to identify prey-infested plants.  相似文献   

11.
Responses of the tachinid fly Exorista japonica Townsend to odors from corn plants infested with the fly’s host, the larvae of the noctuid moth Mythimna separata (Walker), were examined in a wind tunnel. Naïve female flies showed a higher rate of landing on M. separata-infested corn plants from which the host larvae had been removed than on artificially damaged or intact corn plants. When paper impregnated with a solution of headspace volatiles collected from host-infested plants was attached to intact plants, females landed on the plants at a high rate. Females also responded to intact plants to which had been attached with paper impregnated with a synthetic blend of nine chemicals identified previously in host-infested plants. There was an optimum concentration of the synthetic blend for the females’ landing. Of the nine chemicals identified previously, four [(E)-4,8-dimethyl-1,3,7-nonatriene, indole, 3-hydroxy-2-butanone, and 2-methyl-1-propanol] released only by host-infested plants were classified as a host-induced blend. The other five [(Z)-3-hexen-1-yl acetate, (E)-2-hexenal, hexanal, (Z)-3-hexen-1-ol, and linalool] were classified as a non-specific blend released not only by infested plants but also by artificially damaged or intact plants. In the wind tunnel, E. japonica females did not respond to intact plants to which paper containing a solution of non-specific blend or host-induced blend was attached. However, they showed a high level of response to a mixture of the non-specific and host-induced blends. These results indicate that naïve E. japonica use a combination of non-specific and host-induced blends as an olfactory cue for locating host-infested plants.  相似文献   

12.
Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or “primed”) after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results show that exposure to HIPVs triggered systemic induction of direct defenses against gypsy moth and primed volatile emissions, which can be an indirect defense. Blueberry plants appear to rely on HIPVs as external signals for inter-branch communication.  相似文献   

13.
The feeding response of food-deprived Cotesia glomerata to solutions of 14 naturally occurring sugars was determined. Glucose, fructose, sucrose, maltose, erlose, melezitose, trehalose, and stachyose all elicited a feeding response. The sugars differed, however, with respect to the lowest concentration at which they were accepted (acceptance threshold). The parasitoids showed no feeding response when presented with 2 M solutions of galactose, mannose, rhamnose, lactose, raffinose, and melibiose. Sugars from the latter group did not show a deterrent effect when offered to water-deprived parasitoids. When mannose, rhamnose, melibiose, or raffinose were combined with low molar solutions of either fructose or sucrose, sucrose acceptance was affected by mannose and raffinose, whereas no negative interactions were found in mixtures with fructose. Compared to acceptance thresholds reported in other insect systems, the responses of C. glomerata differ considerably with respect to both the range of saccharides accepted as well as the acceptance thresholds. The novel finding that the parasitoid accepts a number of sugars that fail to elicit a feeding response in its herbivorous hosts is of particular interest to the use of (selective) food supplements in biological control programs.  相似文献   

14.
Anagrus nilaparvatae, an egg parasitoid of the rice brown planthopper Nilaparvata lugens, was attracted to volatiles released from N. lugens-infested plants, whereas there was no attraction to volatiles from undamaged plants, artificially damaged plants, or volatiles from N. lugens nymphs, female adults, eggs, honeydew, and exuvia. There was no difference in attractiveness between plants infested by N. lugens nymphs or those infested by gravid females. Attraction was correlated with time after infestation and host density; attraction was only evident between 6 and 24 hr after infestation by 10 adult females per plant, but not before or after. Similarly, after 24 hr of infestation, wasps were attracted to plants with 10 to 20 female planthoppers, but not to plants with lower or higher numbers of female planthoppers. The attractive time periods and densities may be correlated with the survival chances of the wasps' offspring, which do not survive if the plants die before the wasps emerge. Wasps were also attracted to undamaged mature leaves of a rice plant when one of the other mature leaves had been infested by 10 N. lugens for 1 d, implying that the volatile cues involved in host location by the parasitoid are systemically released. Collection and analyses of volatiles revealed that 1 d of N. lugens infestation did not result in the emission of new compounds or an increase in the total amount of volatiles, but rather the proportions among the compounds in the blend were altered. The total amounts and proportions of the chemicals were also affected by infestation duration. These changes in volatile profiles might provide the wasps with specific information on host habitat quality and thus could explain the observed behavioral responses of the parasitoid.  相似文献   

15.
Plant volatiles from cabbage and chrysanthemum were studied as to how they affect behavior of the cabbage moth, Mamestra brassicae (L.). Chemical, electrophysiological, and behavioral techniques were used. The electroantennographic (EAG) evaluation of selected compounds from Brassi-caceae showed that isothiocyanates (NCS) elicited weak responses, and some did not evoke significant EAG responses at all. Green leaf volatiles (GLVs) evoked the strongest responses in both male and female antennae. The capacity of NCS to stimulate upwind flight of mated females was not different at doses of 10–7, 10–6, or 10–5 g when tested in a wind tunnel. At the higher doses, allyl NCS stimulated upwind flight in the females more than the other compounds. Allyl NCS was significantly better than the other compounds at stimulating females to land on targets. Mated females flew upwind and landed on the targets with allyl NCS more often than virgin females and males. With respect to the behavioral activity of GLVs, only (E)-2-hexenal and (Z)-3-hexenyl acetate elicited upwind flight and landing in females. Ten compounds were identified from a chrysanthemum extract by using coupled gas chromatography–electroantennography. Five of these, (Z)-3-hexenyl acetate, 1-8-cineole, -terpinene, chrysanthenone, and camphor, elicited upwind flight of mated females, but only three stimulated landing.  相似文献   

16.
The two-spotted stinkbug, Perillus bioculatus, is a predator of the Colorado potato beetle (CPB), Leptinotarsa decemlineata. Behavioral tests revealed that P. bioculatus is attracted to potato plants, Solanum tuberosum L. (Solanaceae), infested by the CPB. Electroantennograms from the antennae of P. bioculatus were recorded in response to compounds present in the headspace of CPB-infested potato plants. (Z)-3-Hexen-1-ol and 2-phenylethanol elicited the highest EAG amplitudes. Linalool, 4,8-dimethyl-1,3(E),7-nonatriene, nonanal, decanal, and (R)-(+)-limonene evoked lower EAG amplitudes. The major headspace components -caryophyllene and -selinene produced only weak EAG responses. Antennal sensitivity of the CPB to (Z)-3-hexen-1-ol was higher than that of P. bioculatus, whereas the stinkburg was more sensitive to 2-phenylethanol, -caryophyllene, (R)-(+)-limonene, and decanal. Among these compounds, 2-phenylethanol is of special interest since it was observed to be emitted by potato foliage only after being damaged by CPBs.  相似文献   

17.
Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum ( Sorghum bicolor), while the nonhost plant was molasses grass (Melinis minutiflora). In single-choice tests, females of C. sesamiae chose volatiles from infested and uninfested host plants and molasses grass over volatiles from the control (soil). In dual-choice tests, the wasp preferred volatiles from infested host plants to those from uninfested host plants. There was no discrimination between molasses grass volatiles and those of uninfested maize, uninfested sorghum, or infested maize. The wasp preferred sorghum volatiles over maize. Combining uninfested maize or sorghum with molasses grass did not make volatiles from the combination more attractive as compared to only uninfested host plants. Infested maize alone was as attractive as when combined with molasses grass. Infested sorghum was preferred over its combination with molasses grass. Local growth conditions of the molasses grasses influenced attractiveness to the parasitoids. Volatiles from Thika molasses grass were attractive, while those from Mbita molasses grass were not. Growing the Thika molasses grass in Mbita rendered it unattractive and vice versa with the Mbita molasses grass. This is a case of the same genotype expressing different phenotypes due to environmental factors.  相似文献   

18.
Neural responses of the Colorado potato beetle (CPB), Leptinotarsa decemlineata to volatiles emitted by potato plants, Solanum tuberosum L were investigated. Amplitudes of electroantennograms to measured amounts of a standard odorant, (Z)-3-hexenyl acetate, increased from day of emergence through at least six to eight days of adulthood. Among 20 potato volatiles examined, several constitutive compounds, e.g., the green leaf volatiles (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, and (Z)-3-hexenyl butyrate, and systemic volatiles released primarily in response to insect feeding, e.g., (±)-linalool, nonanal, methyl salicylate, and indole, were the most effective stimuli. A statistic called linear age-skew (linear orthogonal polynomial) was used to examine differences in responses to potato volatiles between young and mature CPB. Based on plots of linear age-skew and overall neural responsiveness, 10 volatiles could be identified for which responses increased at a rate similar to or greater than the standard. The results are discussed with regard to the relationship of the CPB to its host plant and developmental studies of insect sensory responses to chemical signals.  相似文献   

19.
The behavioral responses of apple leafcurling midge,Dasineura mali Kieffer, mated females to foliage from host and nonhost trees were investigated in a wind tunnel. When released downwind of apple or pear foliage, females exposed to apple were more likely to exhibit upwind flight and to approach and land on foliage. On apple foliage, landings were concentrated on buds and immature leaves. Probability of taking flight and latency to flight did not differ for females exposed to apple and pear. When foliage was placed behind screens to obscure plant visual stimuli, females again distinguished between apple and pear, with more of the females exposed to apple odors flying upwind and landing. Females exposed to pear odors were more likely to fly upwind, approach, and land than females exposed to clean air. Odors from immature apple foliage triggered orientation responses in a larger percentage of females than odors from mature apple foliage. A dichloromethane extract of immature apple foliage also triggered orientation responses.  相似文献   

20.
Herbivore induced release of plant volatiles mediating the foraging behavior of the aphid parasitoid Aphidius ervi was investigated using the pea aphid, Acyrthosiphon pisum, feeding on broad bean, Vicia faba. Behavioral responses were studied using an olfactometer and a wind tunnel. Volatiles obtained by air entrainment of aphid infested plants were more attractive to A. ervi than those from uninfested plants, in both behavioral bioassays. GC-EAG of both extracts showed a number of peaks associated with responses by A. ervi, but with some differences between extracts. Compounds giving these peaks were tentatively identified by GC-MS and confirmed by comparison with authentic samples on GC, using two columns of different polarity. The activity of pure compounds was further investigated by EAG and wind tunnel assays. Results showed that, of the compounds tested, 6-methyl-5-hepten-2-one was the most attractive for A. ervi females, with linalool, (Z)-3-hexen-1-yl acetate, (E)--ocimene, (Z)-3-hexen-1-ol, and (E)--farnesene all eliciting significantly more oriented flight behavior than a solvent control. Foraging experience significantly increased parasitoid responses to these compounds, with the exception of (E)--farnesene. Time-course GC analysis showed that feeding of A. pisum on V. faba induced or increased the release of several compounds. Release of two of these compounds (6-methyl-5-hepten-2-one and geranic acid) was not induced by the nonhost black bean aphid, Aphis fabae. During the analysis period, production of (E)--ocimene remained constant, but 6-methyl-5-hepten-2-one, linalool, geranic acid, and (E)--farnesene appeared during the first day after A. pisum infestation and increased in concentration with increasing time of aphid feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号