首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氮掺杂石墨烯量子点(N-GQDs)因其独特的光学、电学及催化性质受到了广泛的专注。然而,其波长难以调控的问题成为了限制其广泛应用的瓶颈所在。作者以柠檬酸和尿素为主要原料,分别采用溶剂热和水热法制备了N-GQDs 1和N-GQDs 2。XRD和AFM测试结果表明N-GQDs具有石墨烯结构;XPS、FT-IR、UV-Vis和荧光光谱等多种表征手段表明两种N-GQDs都掺杂有氮元素,N-GQDs 1可发射绿色荧光且具有激发波长依赖性,最大发射波长可达523 nm,在生物标记和成像等领域更具有潜在的应用价值。此外,溶剂热反应体系中N,N-二甲基甲酰胺不仅仅作为溶剂,还参与反应,起到氮掺杂和表面钝化的作用,从而证实了反应溶剂在调节N-GQDs光学性质中的重要作用。  相似文献   

2.
过氧化氢氧化酸碱滴定法测定甲醛的含量   总被引:3,自引:0,他引:3  
建立了一种分析甲醛含量的新方法,并用此方法测定了分析纯甲醛的含量为3600%,相对标准偏差为009%。甲醛中所带杂质甲醇以及乙醇均不干扰测定,甲酸的干扰可以扣除。  相似文献   

3.
将硫堇电聚合在氧化石墨烯修饰的ITO电极上,制备了石墨烯/聚硫堇光电极。该光电极作为光敏界面和电子受体,可模拟过氧化氢酶的功能,对电子供体过氧化氢催化氧化的表观米氏常数达到0.143mmol·L~(-1)。该光电极中的氧化石墨烯减小了聚硫堇激发态与ITO电极之间的带隙,提高了光电极的光电转化效率,对过氧化氢具有快速的光电化学响应。由该光电极组成的光致电化学测量系统,光电转化效率快,在5.00×10~(-7)~1.00×10~(-4) mmol·L~(-1)的浓度范围内,可对过氧化氢实现高灵敏度的流控分析。  相似文献   

4.
分别测定了胭脂红和苋菜红与石墨烯/CdTe量子点复合物相互作用的荧光光谱和紫外吸收光谱。研究发现胭脂红和苋菜红均对石墨烯/CdTe量子点复合物具有较强的荧光猝灭作用,且均为静态猝灭过程。但是由于结构上的差异,所引起的石墨烯/CdTe量子点复合物荧光猝灭率有所不同。通过变温实验、紫外吸收光谱和结构分析,得出胭脂红引起的石墨烯/CdTe量子点复合物的猝灭率更高。研究还发现,胭脂红和苋菜红的浓度与石墨烯/CdTe量子点复合物荧光强度的降低之间均存在良好的线性关系,可分别用于胭脂红和苋菜红的定量分析。  相似文献   

5.
We demonstrated a facile method to prepare photoluminescent graphene quantum dots using commercial polyacrylonitrile(PAN) based carbon fibers(CFs) as the raw material by facile chemical oxidation and exfoliation method. The as-prepared GQDs with uniform size exhibit an excitation-independent photoluminescence behavior, which is similar to other semiconductor quantum dots. Moreover, when acting as catalyst the uniform GQDs have better activity for electrochemical oxidation of dopamine(DA) than graphene oxides(GOs). The square wave voltammogram(SWV) peak values of GQDs are in good correspondence with DA concentrations and can act as a sensor of DA.  相似文献   

6.
成功地合成了石墨烯/CdTe量子点复合物,并基于亮蓝对石墨烯/CdTe量子点复合物的较强的荧光猝灭作用,研究了亮蓝与石墨烯/CdTe量子点复合物相互作用的光谱性能。研究发现,亮蓝的紫外吸收光谱和石墨烯/CdTe量子点复合物的荧光发射光谱相互重叠,亮蓝荧光发射强度的增加和石墨烯/CdTe量子点复合物荧光发射强度的降低,推断两者之间发生了荧光共振能量转移。此外,石墨烯/CdTe量子点复合物荧光强度的降低(F0/F)与亮蓝的浓度之间具有良好的线性关系,线性范围为12.62-94.65nmol·L-1,最低检出限为6.4nmol·L-1,可用于溶液中亮蓝的定量分析,为建立新型荧光传感器提供了理论和实验基础。  相似文献   

7.
铜是哺乳动物所需营养中的微量元素,每天摄入1.5 - 2.0 mg铜是必不可少的。但过量的摄入铜对人体会产生毒性,而且测定血清和尿液中的铜水平对于某些疾病的早期诊断是非常重要的,因此建立铜的定量分析方法尤为重要。本实验基于Cu2+对氮硫掺杂石墨烯量子点的较强的荧光猝灭作用,建立了一种快速、高灵敏检测Cu2+的方法,结果表明检测范围具有可调性,最低检出限为2.708 nmol/L。并通过变温实验和热力学计算探究了其猝灭机理为静态猝灭过程。  相似文献   

8.
聚四乙烯基吡啶复合型CdTe量子点合成   总被引:2,自引:0,他引:2  
以巯基丙酸为稳定剂,采用水热法合成了CdTe量子点,并以CdTe量子点为核,包覆4-乙烯基吡啶(4-VPy),制备得到核壳型4-VPy /CdTe荧光纳米复合粒子.用荧光(FL)分光光度、透射电子显微镜(TEM)等分析测试手段,对得到的荧光纳米复合粒子的性能进行表征.结果表明,4-VPy /CdTe纳米复合粒子是核壳粒子拥有较好的水溶性,有效地提高了量子点的稳定性.吸收光谱和荧光光谱表明,所合成的CdTe量子点具有优异的发光特性.  相似文献   

9.
二氧化钛(TiO2)是一种传统的光催化剂材料,但由于其自身带隙宽(3.2 eV)及光生载流子易复合,往往需要通过贵金属或过渡金属掺杂、阴离子掺杂、构建异质结等手段增强其对太阳光的有效吸收,促使光生载流子分离并抑制其复合。采用两步法构建TiO2/CdS异质结,首先通过多重电压阳极氧化法制备结构化的TiO2纳米管阵列,再以TiO2纳米管为基底,通过化学浴沉积法在TiO2纳米管管壁内外均匀生长CdS量子点。通过X射线衍射、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外?可见光谱(UV?VIS)对TiO2/CdS异质结组成、形貌和光学性质进行了表征。结果表明,构建的TiO2?CdS异质结有效抑制光生载流子复合,促进激发电子的转移,提高光催化产氢效率;样品TiO2(1.0)?CdS(1.0)产氢效率达到1.30 mmol/(g?h),是CdS量子点的1.67倍。最后,基于实验分析提出了可见光光解水制氢过程中光生电子在TiO2?CdS上的转移机制。  相似文献   

10.
研究了InGaAs/GaAs自组织量子点体系的应变分布.结果表明, 量子点形状的各向异性对其流体静压应变的影响较为微弱, 而对单轴应变的影响则更加明显且较为复杂.对于实验生长的常见S-K模式的量子点, 其弹性张量的立方对称度大于形状对称度, 因此应变分布中的各向异性主要由量子点形状的各向异性决定.量子点内部应变对于量子点各方向尺寸的相对变化较为敏感, 而量子点体积的变化对其应变分量几乎没有影响.  相似文献   

11.
研究了在Si衬底上自组织生长Ge岛或Ge量子点的光致发光特性.用原子力显微镜(AFM)和透射电子显微镜(TEM)观察Ge岛的大小和密度,经过680℃退火30 min,观察到了量子点的光致发光.  相似文献   

12.
石墨烯量子点是石墨烯中一种新型的碳基零维纳米材料,除了具备石墨烯本身的物理化学性质之外,同时拥有良好的生物相容性、稳定性、低毒性、光致发光等特性。报导了一种以多壁碳纳米管(MWCNTs)为碳源,通过改良的Hummers法氧化剥离制备石墨烯量子点(GQDs)的简单方法,所得到的GQDs样品具有很强的光电子性能。作为一种有效的增效剂,通过简单的湿浸渍法和肼还原法成功的合成了P25-R-GOQDs-N纳米复合材料。在可见光照射下,对有机染料罗丹明B(Rh B)进行光催化降解实验,相比于P25(商业化Ti O2),P25-R-GOQDs-N样品显示出更高的光催化活性,表明石墨烯量子点起到了关键作用。  相似文献   

13.
根据所用Pb源和S源的差异,将PbS胶体量子点的制备分为3类,并加以对比;结合应用领域对PbS不同性能的要求,描述了常用的改性方法;并在最后提出PbS制备方法和改性的可能方向,对PbS制备和应用具有一定的参考价值.  相似文献   

14.
在紫外光照射下,用过氧化氢对罗丹明B进行光催化脱色,研究了无机酸、pH值、H2O2浓度、光解时间对光催化脱色效果的影响。实验结果表明,过氧化氢光催化氧化20mg/L的RB溶液脱色的最佳条件为:用HCl调节溶液pH=2,H2O2浓度为97.63mmol/L,光解时间为15min。此时,罗丹明B脱色率可达98%以上。  相似文献   

15.
利用原子力显微镜研究三聚氰胺甲醛微胶囊在模型织物表面的吸附力,其中壳聚糖被用来改性以纤维素膜为模型织物的表面.实验结果表明:利用壳聚糖溶液改性纤维素膜,单个微胶囊与纤维素膜间的吸附力从2.3±1.0 n N增加到57.7±31.1 n N(接触时间为0.01 s).因此,利用壳聚糖改性纤维素膜能够增加三聚氰胺甲醛微胶囊在织物表面的吸附力.同时,通过进一步分析原子力显微镜测试得到的"力-位移图"发现:纤维素分子链伸展产生的桥接力是影响微胶囊和未改性纤维素膜之间作用力的主要原因;而静电力是影响微胶囊与壳聚糖改性纤维素膜之间作用力的主要原因.  相似文献   

16.
采用水相合成法,制备出核/壳结构CdTe/CdS纳米晶量子点,用红外光谱和X射线衍射对其结构进行了表征,并对CdTe纳米晶量子点光稳定性以及CdTe/CdS纳米晶量子点荧光特性影响因素进行了研究.结果表明:随着放置时间的增加,CdTe量子点的光学稳定性下降;随着反应时间的增加和壳/核比例的增加,CdTe/CdS纳米晶量子点的荧光发射波长均发生红移;且反应时间增加,荧光强度增强;当CdS与CdTe壳/核比例为2∶1时,荧光强度最强.  相似文献   

17.
用巯基乙酸作为稳定剂,采用水相合成的方法合成水溶性CdTe量子点、CdTe/CdS核/壳型量子点和CdTe/CdS/ZnS核/壳/壳型量子点.研究了稳定剂的投入量、反应时间和反应环境pH值等合成条件对这三种量子点发光性能的影响.实验结果表明:通过调节稳定剂的投入量、反应时间和pH值等实验条件,可以实现对量子点光学性质的调节,并使其达到最优值.同时,用X衍射分析仪表征了三种量子点的结构,表明三种量子点具有相同的立方(cubic)晶型结构.  相似文献   

18.
采用水相合成法,以三种不同的稳定剂:巯基乙醇,巯基乙酸和巯基乙胺制备了CdTe/CdS核壳结构的量子点.研究了反应时间和稳定剂的种类对量子点荧光的光学特性的变化趋势的影响.结果表明,随着量子点晶体生长时间的增加,量子点的荧光峰向红移,荧光发射强度增加,半峰宽几乎保持不变.稳定剂的种类对量子点的荧光发射峰的波长有较大的影响.采用CdS对CdTe进行包裹,制备壳核结构的CdTe/CdS量子点.包裹后能增强水相制备过程中量子点在水相中的荧光强度和发光稳定性,改变量子点的荧光特性.采用红外光谱,对稳定剂和量子点之间的连接关系进行了初步探讨,并采用透射电子显微镜,对CdTe/CdS量子点的微观形态进行观察.  相似文献   

19.
采用分子动力学模拟方法研究过氧化氢(Hydrogen Peroxide,HP)作为客体分子形成结构Ⅰ型(SI)水合物稳定性。系统分析了不同数目的HP填充到SI笼子中形成水合物晶体稳定机理。模拟表明,无辅助气体下,HP不能形成稳定的SI水合物。添加甲烷辅助气体对水合物形成具有稳定作用,随辅助气体的增加水合物笼状结构破坏缓慢。在添加1个HP到SI大胞腔中,其它胞腔填充辅助气体情况下,能形成稳定SI水合物。研究表明HP作为促进水合物分解的化学试剂与醇类具有相似性质,仅在低浓度下可以形成稳定水合物,为HP溶液促进甲烷水合物分解实验研究提供参考。  相似文献   

20.
Pr3+ doped ZnO quantum dots(QDs) were successfully synthesized by sol-gel process. X-ray diffraction(XRD) and X-ray Phtoelectron spectroscopy(XPS) were used to analyze the microstructure variation of ZnO QDs and the chemical environment of Pr3+ with increasing Pr3+ doping concentrations. Most of Pr3+ ions distribute on the surface of ZnO QDs while a few of them penetrate into the ZnO lattice to substitute Zn2+ which causes the lattice distortion and the change of the crystal size. With increasing concentration of Pr3+ ions, the crystal size of ZnO QDs firstly increases and then decreases meanwhile the amorphization gradually increases. New Pr-O-Zn bonds formed after Pr3+ doping and Pr3+ ions have at least two chemical bonding environments: one is Pr-O-Zn bond and the other is Pr-O bond surrounded by oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号