首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
目前利用钾长石提钾的工艺研究多为过程复杂且能量损耗较大,本文提出了一种利用微波辐射协助水热反应提钾的新方法。采用微波辐射预处理钾长石粉末,加热迅速,再通过低温条件下的水热反应体系溶出钾离子,对此过程中微波辐射时间,微波辐射功率因素对钾溶出率的影响进行研究,并通过SEM、XRD等表征手段对反应后滤渣进行微观分析。优化工艺条件可以得出,在微波辐射功率600W、微波辐射时间15min、水热反应时间180min、水热反应温度180℃时效果最佳。研究结果表明:最优条件下,钾的溶出率达92%;微波辐射使钾长石预处理后表面发生变化,生成K0.85Na0.15AlSiO4等产物,提高了钾长石的溶出性能;反应生成水羟方钠石[Na8Al6Si6O24(OH)2(H2O)2];有效节约了反应时间和反应过程中的能量损耗。  相似文献   

2.
采用球磨反应和静态水热反应对钾长石-氧化钙-氢氧化钾体系提钾工艺进行了研究,结果显示:温度对钾长石提钾有较大的影响,静态水热反应提钾效果优于球磨反应.较适宜的静态水热反应工艺条件为:m(氧化钙)/m(钾长石)为1.5,m(钾长石)/m(氢氧化钾)为15,恒温220℃下反应10h,每克钾长石加水量为20 mL,此时钾溶出率达到90%以上.  相似文献   

3.
研究了常压下氢氧化钠分解钾长石工艺。结果表明:常压下氢氧化钠分解钾长石水热反应宜在沸腾状态下进行,待游离水分完全挥发后继续加热养护一定时间,然后产物加水浸取。比较理想的工艺条件为:m钾长石∶m氢氧化钠=1.0∶3.0,固液比为8∶1,养护温度220℃,养护时间15 min,浸取水量为25 mL/g。在理想工艺条件下,钾溶出率在85%以上。  相似文献   

4.
以新疆哈密钾长石为原料,采用水热反应,研究了碱溶体系和磷矿—磷酸酸溶体系对哈密钾长石提钾工艺的影响。通过单因素及正交实验得出碱溶体系下最适宜提钾条件为:反应温度210℃、反应时间3.0h、钾长石∶NaOH1∶1.4(g/g)、钾长石与水的体积比1∶3(g/mL),可溶性钾的最大提取率为93.19%;磷矿—磷酸酸溶体系最适宜提钾条件为:反应温度260℃、磷酸质量分数85%、钾长石∶磷酸1∶4.5(g/mL)、钾长石∶磷矿1∶0.25(g/g)、反应时间3.5h,可溶性钾的最大提取率为91.48%。提钾后的残渣的XRD分析结果显示,两种工艺条件下钾长石的主衍射峰均消失,表明钾长石已基本分解。提钾工艺比较性研究表明,哈密钾长石在碱溶体系具有较高的提钾率,工艺条件相对简单。  相似文献   

5.
钾长石与氯化钙在磷酸体系中的反应过程探讨   总被引:2,自引:0,他引:2  
基于低温水热反应理论,以钾长石和无水氯化钙为反应物,在磷酸体系中研究温度、时间和钾长石粒径对钾、铝溶出率的影响。通过正交试验得出比较理想的反应条件:温度200℃;65%的磷酸用量2.23mL/(g钾长石);配料比m(氯化钙):m(钾长石)=1.5:1,此时,钾长石中K2O溶出率可达75%以上,Al2O,溶出率可达95%以上。  相似文献   

6.
探讨了微波协同条件下钾长石低温提钾工艺过程。在微波消解仪中使用化学试剂与钾长石反应,分析各影响因素对钾溶出率的影响。研究结果表明:钾长石粒径越小,钾的溶出率越高;硫酸质量分数增大,溶出率逐步增大;溶出率随反应温度的上升而增加,在反应温度达到160 ℃时,钾提取率趋于稳定。利用响应面分析法对钾长石提取工艺条件进行优化,最终确定最佳实验条件:硫酸质量分数为70%,钾长石与磷矿质量比为0.8∶1,氟化钙与磷酸钙质量比为3∶1,温度为160 ℃,钾提取率达到83%以上。  相似文献   

7.
建立钾长石-硫酸常压水热反应体系,考查了反应温度、硫酸浓度、固液比以及反应时间对反应过程的影响。实验结果表明,硫酸能够分解钾长石,但常压下,硫酸分解钾长石溶出率只能在12%左右。在仅有硫酸和钾长石的常压体系下很难得到较高的钾溶出率。  相似文献   

8.
详细研究了钾长石与磷矿、硝酸脲反应的提钾新工艺, 验证了钾长石-磷矿-硝酸脲体系分解钾长石提取有效钾的可行性。通过正交实验得到各因素对钾溶出率影响大小依次为:反应温度>硝酸用量>反应时间>尿素与硝酸物质的量比。得到适宜的工艺条件:尿素和硝酸物质的量比为1:1;5.5 mol/L的硝酸用量为4 mL;反应温度为120 ℃;反应时间为2 h。在此条件下有效钾的溶出率可达96.23%,水溶性钾溶出率可达29.65%。通过单因素寻优实验得出钾长石与磷矿、硝酸脲反应提取有效钾的适宜工艺条件:反应温度为105~115 ℃,硝酸用量约为4.7 mL,反应时间约为2 h。  相似文献   

9.
钾长石湿法提钾工艺研究   总被引:1,自引:0,他引:1  
根据离子交换反应原理,选取钾长石与磷矿、硫酸在水热反应釜中反应,对钾长石与磷矿、硫酸反应的提钾工艺进行了研究,为开发利用钾长石提钾工业应用提供理论依据。实验表明,各影响因素对钾长石中钾溶出率的影响由大到小依次为:原料配比、硫酸浓度、反应时间、硫酸用量、反应温度。适宜工艺条件为:钾长石与磷矿质量比为0.8 ∶[KG-*3]1,硫酸用量为4 mL/g,硫酸质量分数为70%,反应温度为160 ℃,反应时间为4 h。在此条件下,钾溶出率可以达到74.1%。  相似文献   

10.
钾长石低温提钾工艺的机理探讨   总被引:2,自引:0,他引:2  
黄珂  王光龙 《化学工程》2012,40(5):57-60
使用化学试剂与钾长石反应模拟低温提钾过程,通过分析各组分对钾溶出率的影响,初步探讨钾长石低温提钾过程的机理,为该工艺的工业化提供理论依据。钾长石低温提钾过程为:首先是硫酸与磷矿反应产生HF,HF分解破坏钾长石的结构,在此基础上Mg2+,Ca2+与钾长石中的K+发生置换反应成为平衡电荷离子。随着钾长石与模拟磷矿配比的增加,钾溶出率先有所上升,在配比达到0.8∶1时达到最高。随着镁钙比的增加,钾的溶出率出现先增加,在1∶1时达到最高,然后呈现基本水平的趋势。在常见磷矿氟含量范围内,随着氟化钙量的增加,钾的溶出率呈现单调增长。实验表明,组分对钾溶出率影响从大到小为:氟化钙质量>氧化镁与氧化钙质量比>磷酸三钙质量。  相似文献   

11.
钾长石提钾工艺研究   总被引:1,自引:0,他引:1  
根据离子交换反应原理,对钾长石与磷矿、硫酸反应的提钾工艺进行了研究。实验表明,各因素对钾长石中钾溶出率的影响大小依次为:原料配比硫酸质量分数硫酸用量反应时间反应温度。实验条件下的适宜工艺条件为:矿石质量比0.8∶1,硫酸用量4 mL/g,硫酸质量分数70%,反应温度160℃,反应时间4 h,钾溶出率可以达到74.1%。  相似文献   

12.
正交法钾长石与磷矿共酸浸提钾工艺研究   总被引:2,自引:0,他引:2  
结合重钙生产工艺,选取钾长石与磷矿、磷酸在水热反应釜中反应,利用正交实验研究了磷酸用量、磷酸浓度、反应温度、反应时间和原料配比对钾长石中钾溶出率和磷矿中磷溶出率的影响。实验较适宜的工艺条件为:原料配比(钾长石与磷矿粉的质量比)0.8 1,反应温度150℃,磷酸用量4 mL,反应时间2.5 h,磷酸浓度46%P2O5,在此条件下钾溶出率为48.93%,磷溶出率为90.12%。通过对磷矿中氟离子的去向进行研究,并采用XRD对水浸取渣进行物相分析,实验结果表明氟离子被固定在固相产物中。  相似文献   

13.
曾莉 《江西化工》2013,(4):175-178
本文以高岭土和氢氧化钠为主要原料,在微波辅助下用碱溶法提取氧化铝。研究了微波辅助碱溶法的溶出工艺和溶出性能,并系统讨论了反应阶段反应的微波时间、焙烧温度、微波功率、反应温度、氢氧化钠质量分数以及液固质量比对氧化铝溶出率的影响。通过试验研究,优化出最佳溶出工艺条件为:微波时间120min,焙烧温度450℃,微波功率600w,反应温度85℃,氢氧化钠质量分数为50%,液固质量比为30:1。该条件下氧化铝的溶出率为61.17%。  相似文献   

14.
钾长石与磷矿磷酸反应机理研究   总被引:3,自引:0,他引:3  
分析了钾长石、磷矿、磷酸不同组合反应体系的钾、磷溶出率,并用XRD和FTIR对反应物和产物进行了物相分析。实验结果表明:磷酸不能分解钾长石,但加入磷矿以后,钾长石中钾可以被大量提出;反应分二步,首先是磷酸分解磷矿生成可溶于水的Ca(H2PO4)2和HF,然后HF能分解钾长石,但钾长石中钾的提取主要是Ca(H2PO4)2电离的Ca2 与钾长石中K 发生离子交换反应的结果。实验结果还表明,体系中的氟也会以K2SiF6的形式固定钾而降低钾的溶出率。  相似文献   

15.
微波辐射合成单脂肪酸甘油酯   总被引:2,自引:0,他引:2  
在微波辐射条件下,以氧化钙为催化剂,用脂肪酸和甘油合成了单脂肪酸甘油酯。讨论了微波功率、辐射时间、催化剂用量和醇酸摩尔比对反应的影响。其最佳反应条件为:n(脂肪酸):n(甘油)=1:2,催化剂氧化钙1.0%,微波功率为450W,反应时间20min。该条件下的反应速率是常规加热条件下的9倍~13倍,其产物与常规加热相比具有较高的单酯含量。  相似文献   

16.
钾长石-硫酸钙-碳酸钙热分解体系的再探索   总被引:6,自引:4,他引:6  
对钾长石-硫酸钙-碳酸钙体系提钾反应进行了热力学计算,系统研究了物料配比、焙烧温度、反应时间和Na2SO4添加量对热分解体系的影响,最后得出物料摩尔配比为n(钾长石):n(CaSO4):n(CaCO3)=1:1:14,在1423K温度下反应2h,钾长石中钾溶出率为92.02%.当Na2SO4添加量为2.94%时,反应温度可降为1273K,此时钾溶出率可达92%~94%.对焙烧产物进行了XRD分析,得出其主要物相为:K2SO4、3CaO·Al2O3和2CaO·SiO2,与物料摩尔配比1:1:14所确定化学反应的产物相吻合.  相似文献   

17.
焙烧钾长石制硫酸钾的实验研究   总被引:3,自引:0,他引:3  
系统研究了钾长石-硫酸钙-碳酸钙体系提钾反应的物料配比、焙烧温度、反应时间和Na2SO4添加量对热分解的影响,最后得出物料摩尔配比为n(KAS6)∶n(CaSO4)∶n(CaCO3)=1∶1∶14。在1 423 K温度下反应2 h,钾长石中钾溶出率为92.02%。当Na2SO4添加量为2.94%(质量百分比),反应温度可降为1 273 K,此时钾溶出率可达92%~94%。对焙烧产物进行了XRD分析,得出其主要物相为K2SO4、C3A和C2S,并确定其热分解化学方程式,进行热力学计算。  相似文献   

18.
钾长石-NaOH体系水热法提钾工艺研究   总被引:4,自引:0,他引:4  
在水热条件下建立钾长石-NaOH反应体系,全面探讨影响该体系钾溶出率的各种因素。试验表明,在最优条件下钾的溶出率可高达90%以上。原矿和滤渣的XRD物相分析表明,NaOH添加剂破坏了钾长石的晶体结构,并形成了新物相。  相似文献   

19.
研究了混合碱分解锂云母的工艺实验。考察了分解过程中,苛性碱用量、生石灰用量、水用量、反应时间、反应温度等因素对锂云母中锂、钾、铝、硅浸取率的影响。利用X射线衍射仪(XRD)对浸出渣的组成和各元素浸取率的变化进行了研究。结果表明,混合碱分解锂云母的优化工艺条件为:m(锂云母)∶m(氢氧化钠)∶m(水)∶m(氧化钙)=15.0∶30.0∶10.0∶4.5,反应温度为230℃,反应时间为5 h。在此条件下锂的浸取率85%以上,钾的浸取率为75%,铝、硅浸出率较低。  相似文献   

20.
研究了钾长石-磷矿-硝酸体系球磨反应效果,得出较为适宜的工艺参数是:硝酸质量分数为45%,每克磷矿硝酸用量为2 m L,球磨时间为8 h,m(球磨子)/m(物料)为30,球磨机转速为600 r/min。原料配比对钾的溶出率影响最大,在磷矿与钾长石质量比为2时,钾的溶出率可以达到90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号