首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
采用典型的湿化学法制备了2%(wt)FeF_3包覆的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2材料,并且通过XRD,SEM及TEM等技术来分析材料的微观结构和形貌。结果显示,在Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2材料表面包覆着一层5~20 nm厚的FeF_3薄膜。通过电化学性能测试发现,2%(wt)FeF_3@Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2样品的首次库伦效率更高,高倍率性能更佳,循环性能更加稳定。在0.5C倍率下循环100次后,其容量保持率仍有94.2%,放电比容量为190.6 m Ah×g~(-1)。同时电化学阻抗结果表明,FeF_3包覆层能够抑制Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和电解液之间的副反应,稳定材料的层状结构。  相似文献   

2.
采用3种含铝化合物(AlPO_4、Al_2O_3和AlF_3)对富锂锰基材料Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2进行表面包覆改性,研究了表面包覆对富锂锰基材料的首圈库伦效率和循环性能的影响。结果表明与原始的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2的库伦效率(71.0%)相比经过AlPO_4表面包覆改性的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2库伦效率最高达到了86.3%。经过50圈循环后相比于原始的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2的容量保持率(58.9%),由Al_2O_3表面包覆改性的容量保持率提高最大,为96.1%。经过AlF_3表面包覆改性的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2综合性能最佳,其首圈库伦效率达到了81.1%,容量保持率达到了92.4%。  相似文献   

3.
采用钛酸四丁酯[Ti(OC_4H_9)_4]水解和900℃高温烧结工艺制得不同Ti~(4+)含量掺杂下的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(1-x)Ti_xO_2正极材料。采用XRD、SEM等表征方法对Ti~(4+)掺杂前后的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2颗粒的微观结构、表面形貌进行分析研究,发现掺杂前后材料的结构并未明显变化。电化学测试结果表明,虽然Ti~(4+)表现为非电化学活性,使得掺杂有Ti~(4+)的正极材料其首次充放电比容量有所降低,但是在高倍率性能及循环性能测试中,Ti~(4+)掺杂改性效果表现明显。其中当Ti~(4+)掺杂量为x=0.02时,其倍率性能及循环性能最佳。在5C高倍率下放电,Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(0.98)Ti_(0.02)O_2样品的放电比容量要比未掺杂样品高出约20 m A·h/g。而且经过100次循环后,Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(0.98)Ti_(0.02)O_2样品的放电比容量仍有187.9 m A·h/g,容量保持率高达96.8%。而未掺杂样品的100次循环后容量保持率仅有91.2%。  相似文献   

4.
实验采用NH_4VO_3对富锂锰基材料Li_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2(Lirich)进行表面修饰。使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征。TEM显示在材料表面形成10 nm左右的包覆层。XRD结果发现,包覆后的Li_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2(Lirich-V_2O_5)晶体中出现Li_3VO_4。Lirich-V_2O_5的首次充放电效率为103.1%,说明V_2O_5包覆层对Li Mn_(0.54)Co_(0.13)Ni_(0.13)O_2起到了预活化的作用。Lirich循环20圈之后的容量保持率为71.4%,而Lirich-V_2O_5的容量保持率则达到了90.4%,说明V_2O_5包覆层有效抑制材料与电解液的副反应。  相似文献   

5.
以柠檬酸为螯合剂,采用溶胶-凝胶法通过调节煅烧温度和陈化时间制备了不同粒径的富锂正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2。结果表明材料的粒径随煅烧温度增加,逐渐增大;随着陈化时间的增加,呈现先增大后变小的趋势。当煅烧温度为850℃,陈化时间为10 d时,材料具有最优的电化学性能,尤其是倍率性能。在2.0~4.8 V的电压范围内以0.1 C充放电循环60周后放电比容量仍为206.7 m Ah·g-1,2.0 C时的放电比容量为125.6 m Ah·g-1。  相似文献   

6.
富锂正极材料因具有能量密度高、电压窗口大等优点受到关注,然而首次Coulombic效率低、循环性能差等缺点阻碍了其商业化应用。采用共沉淀法并通过不同摩尔比的氯离子(Cl^(-))掺杂制备了Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2-x)Cl_(x)(x=0,0.025,0.050,0.100)富锂正极材料。通过X射线光电子能谱、原位X射线衍射和恒电流间歇滴定等技术系统研究了Cl^(-)掺杂对其电化学性能提升的调控机制。结果表明:Cl^(-)掺杂量为0.05时,该正极材料在0.2 C倍率下首次Coulombic效率由72.8%提升至81.5%,在1 C倍率下经200圈循环,容量保持率由57.9%提升至79.1%。材料优异的电化学性能归因于Cl^(-)掺杂能调控材料中O^(2-)的电化学行为,使其更多氧化为O^(n-)(n<2),抑制O_(2)的产生和逸出,减小结构的破坏。同时,由于Cl^(-)具有较大的离子半径,能扩大富锂材料的层间距,降低极化过电位,加快锂离子扩散速率,因此有效提升富锂正极材料的首次Coulombic效率和循环性能。  相似文献   

7.
采用锂镧锆氧(Li_7La_3Zr_2O_(12))快离子导体包覆Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料,获得了核壳结构复合材料,并探讨表面活性剂在包覆过程的作用机制。利用热重分析、X射线粉末衍射、扫描电子显微镜和电化学性能测试等方法进行结构和性能分析。结果表明,以Tween 20为表面活性剂,600℃合成的Li_7La_3Zr_2O_(12)包覆的富锂正极复合材料的粒径均匀,首次放电比容量达273.2 m A·h/g,1C倍率下45次循环后的容量保持率为86.6%,显示出较好的电化学性能。Li_7La_3Zr_2O_(12)快离子导体壳层提高了电极/电解液界面Li~+的扩散速率,抑制了电解质与活性材料之间的副反应,进而提高了材料的首次Coulomb效率和循环稳定性。  相似文献   

8.
采用溶胶-凝胶法合成富锂锰基(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)正极材料,考察反应pH对材料结构、形貌及电化学性能的影响。X射线衍射(XRD)分析结果表明,制备的材料(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)结晶良好,均为理想层状结构的富锂锰基材料。扫描电子显微镜(SEM)分析结果显示,pH 7.0时制得的材料颗粒细小,分散均匀。充放电性能测试结果显示,pH 7的样品具有良好的电化学性能,在2.0~4.8 V以0.05 C充放电时,首次容量达到263 m Ah/g。同时具有良好的倍率性能,1.0 C放电容量达到200 m Ah/g。  相似文献   

9.
《山东化工》2021,50(8)
三元正极材料在高能量密度和低成本方面表现出吸引人的性能。然而,这些材料容易在颗粒表面发生降解。所以,在这项工作中选用氧化钕作为涂层包覆在三元正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2表面,并进行了一系列表征测试。测试结果显示包覆前后材料具有相同的物相与相似的形貌。当Nd_2O_3的包覆量为x=0.03时,Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2的电化学性能得到提高,即使在5C倍率下,放电容量仍能达到113.2 mAh·g~(-1)。在0.2C下100次循环后容量保持率为88.2%。因此通过氧化钕的包覆可以提高材料的结构稳定性以及电化学动力学。  相似文献   

10.
采用共沉淀法合成了球型前驱体Ni_(0.25)Mn_(0.75)(OH)_2,与锂源混合煅烧得到锂离子电池正极材料Li_(1.2)Ni_(0.2)Mn_(0.6)O_2,并对其进行铝掺杂改性,得到样品Li_(1.2)(Ni_(0.2)Mn_(0.6))_(1-x)Al_(0.8x)O_2(x=0~0.03)。利用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对各个样品的结构、形貌和电化学性能进行了表征,结果表明:掺杂铝后,样品具有规则的球形形貌,层状结构保持完整,阳离子混排程度降低,铝掺杂量为2%的样品(x=0.02)阳离子混排程度最小,结构最稳定,具有较高的首次充放电效率和最优异的循环性能,其首次充放电效率为84.2%,1C倍率下循环50次的容量保持率为95.7%。  相似文献   

11.
本文以燃烧法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2基体,通过机械球磨得到石墨烯修饰的正极材料。用扫描电镜(SEM)、X射线衍射(XRD)、电池测试和电化学工作站表征了材料的晶体结构和电化学性能。结果表明,石墨烯的修饰显著提高了Li Ni_(0.6)Co_(0.2)Mn_(0.2)O_2的容量和循环稳定性:经200℃热处理、1%石墨烯修饰后的样品在3.0~4.3 V、0.1C倍率下首次放电比容量达到170.8 mA·h·g~(-1),比基体材料提高了12 mA·h·g~(-1);1C下循环100周后容量保持率分别为91.1%,比基体提高了6.9%。  相似文献   

12.
采用湿法融合技术及高温固相法合成Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等方法研究材料的结晶相、形貌、微观结构。研究表明,Li_3VO_4均匀地包覆在Li Ni0.8Co0.1Mn0.1O_2表面,未改变原材料的材料结构和形貌,包覆层厚度为1~2 nm。不同含量的Li_3VO_4对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料进行修饰研究表明,3%(质量)Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2在1 C下100次循环后容量保持率为94.13%,具有最佳的倍率性能和循环性能。此外,循环伏安(CV)和交流阻抗(EIS)分析表明,Li_3VO_4能提高Li+电导率,抑制活性材料与电解液之间的副反应,提高材料的电化学性能。  相似文献   

13.
采用聚苯胺-聚乙二醇(PANI-PEG)双导电聚合物对Li_(1.17)Mn_(0.50)Ni_(0.16)Co_(0.17)O_2正极材料进行表面改性。利用XRD、SEM、TEM测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对其电化学性能进行了系统研究。其中3%(wt)的PANI-PEG改性的Li_(1.17)Mn_(0.50)Ni_(0.16)Co_(0.17)O_2正极材料表现出最佳的初始库伦效率(83.0%),最高的放电比容量(100圈后192.0 mA·h·g~(-1)/1C)和最高的倍率性能(130 mA·h·g~(-1)/5C)。  相似文献   

14.
Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_2是一种高比容量锂离子电池正极材料。本文研究通过活性炭中孔道吸附钴、锰、镍盐的混合溶液的途径来制备纳米LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料。XRD研究显示,600℃和800℃焙烧得到的材料相比,700℃下焙烧得到的材料具有低的阳离子混排程度,因而具有好的充放电性能,在0.2C电流下充放,该材料的首次比容量为188.3mAh g~(-1),50圈循环后,容量仍达140.9m Ah g~(-1),容量保持率为74.0%。  相似文献   

15.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

16.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

17.
采用草酸盐共沉淀法制备出锌掺杂的锂离子电池正极材料,结合X射线衍射(XRD)、扫描电镜(SEM)、EDS能谱(EDS mapping)、恒电流充放电和电化学阻抗(EIS)测试,研究Zn2+掺杂对材料晶体结构、形貌及电化学性能的影响。实验结果表明,Zn2+掺杂可抑制高镍材料中的离子混排,形成多孔结构,缩短Li+的扩散路径,从而改善材料的倍率和循环性能。在2.7~4.3 V电压范围内,10 C倍率下Li(Ni_(0.6)Co_(0.2)Mn_(0.2))0.99Zn0.01O2表现出87.8 m Ah·g-1的放电比容量,比LiNi_(0.6)Co_(0.2)Mn_(0.2)O2提高了37.0%,1 C倍率下循环100圈后,Li(Ni_(0.6)Co_(0.2)Mn_(0.2))0.99Zn0.01O2的容量保持率为84.7%,比未掺杂的材料提高了12%。EIS测试结果则进一步验证锌掺杂有效降低了材料的电荷传质阻抗。  相似文献   

18.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li_(1.2)Ni_(0.2-x/2)Mn_(0.6-x/2)Cr_xO_2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li_(1.2)Ni_(0.16)Mn_(0.56)Cr_(0.08)O_2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g~(-1)增加到246.6 mA·h·g~(-1),在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g~(-1)增加到104.2 mA·h·g~(-1)。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

19.
采用静电纺丝技术结合低温固相煅烧合成了中空多孔的LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维,并通过球磨方式实现了碳纳米管表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维。采用TG-DTA、XRD、SEM等分析手段,对合成样品的煅烧温度、物相结构和微观形貌进行表征,然后对其综合电化学性能进行研究。结果表明:CNT表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维可显著改善材料的综合电化学性能。其首次放电比容量达到242.8m Ah/g,1C循环50次后容量保持率达到91.61%,2C倍率放电比容量达到165.8m Ah/g。CNT独特的管状结构,促进了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量的发挥,同时为循环过程中电极体积变化提高缓冲层,改善了材料的电子电导率,结合LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维中空多孔结构为锂离子快速扩散提供了通道,从而实现了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量、倍率和循环性能的显著提高。  相似文献   

20.
以废旧NiCoMn三元材料为原材料,采用溶胶-凝胶自蔓延燃烧法制备出优良的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极三元复合材料,用XRD、SEM和充放电测试等方法对材料的结构、形貌和电化学性能进行了表征,并研究了煅烧温度的影响。结果表明,制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2不仅具有较好的层状结构,还具有多孔的特性;在2.75~4.30 V测试条件下,900℃合成的样品的首次放电容量为169.4 m Ah/g,库伦效率约为88.6%,经过30次循环后,0.2 C倍率下的容量保持率为95.5%,具有最高的比容量和较好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号