首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《应用化工》2017,(1):10-13
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

2.
《应用化工》2022,(1):10-14
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

3.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi_(0.5)Mn_(1.5)O_4/Li电池的电化学行为和LiNi_(0.5)Mn_(1.5)O_4材料表面形貌。结果表明,当在电解液中添加20%(体积分数) BMIMTFSI时,LiNi_(0.5)Mn_(1.5)O_4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g~(-1),5C下的放电比容量为109.36 mA·h·g~(-1),比在1 mol·L~(-1)LiPF_6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi_(0.5)Mn_(1.5)O_4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

4.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

5.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

6.
LiNi_(0.5)Mn_(1.5)O_4具有三维锂离子传输通道、4.7V的高平台电压,成为最有潜力的锂离子动力电池正极材料之一。但是,过渡金属Mn易溶于电解液,使电池循环性能和倍率性能变差。总结了Li_(0.5)Mn_(1.5)O_4正极材料的改性进展,在此基础上,提出了材料改性的研究方向。  相似文献   

7.
研究三(三甲基硅烷)磷酸酯(TMSP)作为电解液添加剂对三元LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2(LNCM523)正极材料锂离子电池高电压性能的影响。线性伏安扫描测试(LSV)、交流阻抗图谱(EIS)、全电池电性能测试等表征结果表明,在高电压下TMSP能优先在正极材料表面形成稳定的CEI膜,有效抑制电解液的氧化分解,其在循环过程中具有较低的阻抗增长率,使LNCM523电池高电压下的循环性能得到有效提高。  相似文献   

8.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

9.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

10.
在1 mol.L-1LiPF6碳酸乙烯酯(EC)+碳酸二甲酯(DMC)+碳酸甲乙酯(EMC)(EC、DMC、EMC体积比为1∶1∶1)的电解液中加入添加剂氟代碳酸乙烯酯(FEC),用循环伏安(CV)、恒流充放电、电化学阻抗谱(EIS)等方法,研究了FEC对电解液的电化学窗口、LiNi0.5Mn1.5O4/Li和Li/MCMB半电池的性能影响。结果表明,在电解液中添加10%的FEC,可以拓宽电解液的电化学窗口,能在MCMB表面形成稳定的固体电解质相界面(SEI)膜,在室温1 C倍率下,LiNi0.5Mn1.5O4/Li电池循环50次后容量保持率能达到97.31%。  相似文献   

11.
为了探究3-异氰酸丙烯(AI)作为电解液添加剂对高镍层状LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(NCM811)/石墨全电池高温性能的影响,在EC:EMC:DEC=3:5:2/15%(wt) LiPF_6电解液中加入不同浓度添加剂,对不同组全电池进行了循环伏安曲线及一系列高温下测试,探究了其电化学性能;通过扫描电子显微镜(SEM)对NCM811正极表面进行了形貌表征。结果表明,适量AI的加入可以增强全电池在高温下的充放电及存储性能,且对高镍正极表面起到保护作用。  相似文献   

12.
近年来随着电动汽车等高功率密度、高比能量的极大需求,传统的正极材料已经不能满足这些要求。且由于LiNi_(0.5)Mn_(1.5)O_4具有高电压和高能量密度等优点,该材料的研究也逐渐增多,在此基础上文章阐述了LiNi_(0.5)Mn_(1.5)O_4材料合成方法的研究进展。不同制备方法得到的材料电化学性能也有所差异,根据所需产品的性能采用相应的制备方法并对其进行改进也是今后研究的重要课题。  相似文献   

13.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

14.
本文研究了丙烯酸用量与预烧温度之间协同关系的复配效应。采用丙烯酸盐自模板法,制备了5V锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料。经XRD、SEM和充放电循环测试,当n_(AA)∶n_(金属离子)=2.8∶1、预烧温度为500℃时,制备的材料为尖晶石结构,结晶度高,粒径大小均匀,在0.5C倍率的充放电循环下,首次放电容量为137mAh·g~(-1),循环50次后容量保持率为94%,电化学性能优良。  相似文献   

15.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

16.
《广东化工》2021,48(8)
本文通过水热法的方式获得了Li Ni_(0.5)Mn_(1.5)O_4正极材料,并且利用1%Al F_3对Li Ni_(0.5)Mn_(1.5)O_4的表面进行包覆改性。SEM电镜测试表明,经过包覆改性手段处理后的样品与纯样相比其材料的晶体结构未发生改变,对未包覆的Li Ni_(0.5)Mn_(1.5)O_4和1%Al F_3包覆后的Li Ni_(0.5)Mn_(1.5)O_4的正极材料通过新威和电化学工作站进行了电化学性能测试,所获结果表明:发现Al F_3在材料表面形成的包覆层对电解液与Li Ni_(0.5)Mn_(1.5)O_4正极材料之间的相互作用起到了抑制作用,因此经过包覆改性的Li Ni_(0.5)Mn_(1.5)O_4正极材料的电化学性能明显提高,1%Al F_3包覆后Li Ni_(0.5)Mn_(1.5)O_4的正极材料的倍率性能以及0.2C低电流密度下首次放电比容量均得到提高。  相似文献   

17.
采用湿化学法,对高镍正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2进行不同比例的Co_3O_4表面包覆改性研究。利用XRD、SEM、TEM等测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对各样品的电化学性能进行了测试。其中0.5%(wt)Co_3O_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2样品表现出最佳的首次充放电性能、循环性能和高温稳定性能。在55℃下循环180圈后,仍具有142.9 mA·h·g~(-1)的放电比容量,容量保持率为63.7%。同时借助电化学阻抗(EIS)测试对改性的原因进行了分析。  相似文献   

18.
以废旧NiCoMn三元材料为原材料,采用溶胶-凝胶自蔓延燃烧法制备出优良的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极三元复合材料,用XRD、SEM和充放电测试等方法对材料的结构、形貌和电化学性能进行了表征,并研究了煅烧温度的影响。结果表明,制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2不仅具有较好的层状结构,还具有多孔的特性;在2.75~4.30 V测试条件下,900℃合成的样品的首次放电容量为169.4 m Ah/g,库伦效率约为88.6%,经过30次循环后,0.2 C倍率下的容量保持率为95.5%,具有最高的比容量和较好的循环性能。  相似文献   

19.
储量丰富的钠使钠离子电池在大规模储能领域得到广泛应用,但是钠离子电池的循环性能还需进一步改善。在1 mol/L NaClO_4/EC/PC电解液中加入0. 5%五氟乙氧基环三磷腈(FPN)添加剂,可以有效地调控P2-Na_xCo_(0. 7)Mn_(0. 3)O_2(x≈1. 0)钠离子正极材料的界面稳定性,提高钠离子电池的循环稳定性。电化学和物化表征分析测试结果表明,FPN添加剂的加入可以在P2-Na_xCo_(0. 7)Mn_(0. 3)O_2(x≈1. 0)正极材料表面形成一层富含Na F的致密正极电解质中间相(CEI),该CEI层可以明显降低电池的阻抗,抑制电解液的持续分解,使得电池在1 C倍率下循环200圈之后还可以保持92%的容量保持率,而没有添加FPN添加剂的基础电解液在1 C倍率下循环200圈之后的容量保持率只有75%。  相似文献   

20.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号