首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proton-pumping NADH:ubiquinone oxidoreductase of Escherichia coli is composed of 14 different subunits and contains one FMN and up to nine iron-sulfur clusters as prosthetic groups. By use of salt treatment, the complex can be split into an NADH dehydrogenase fragment, a connecting fragment and a membrane fragment. The water-soluble NADH dehydrogenase fragment has a molecular mass of approximately 170,000 Da and consists of the subunits NuoE, F, and G. The fragment harbors the FMN and probably six iron-sulfur clusters, four of them being observable by EPR spectroscopy. Here, we report that the fully assembled fragment can be overproduced in E. coli when the genes nuoE, F, and G were simultaneously overexpressed with the genes nuoB, C, and D. Furthermore, riboflavin, sodium sulfide, and ferric ammonium citrate have to be added to the culture medium. The fragment was purified from the cytoplasm by means of ammonium sulfate fractionation and chromatographic steps. The preparation contains one noncovalently bound FMN per molecule. Two binuclear (N1b and N1c) and two tetranuclear (N3 and N4) iron-sulfur clusters were detected by EPR in the NADH reduced preparation with spectral characteristics identical with those of the corresponding clusters in complex I. The preparation fulfills all prerequisites for crystallization of the fragment.  相似文献   

2.
Guanosine triphosphate (GTP)-binding protein subunits were studied by immunoblot analysis in particulate fractions from mature adipocytes, confluent preadipocytes, and in vitro-differentiated preadipocytes. Mature adipocytes express Gi alpha 1, Gi alpha 2, Gi alpha 3, Go alpha, Gq/11 alpha, G13 alpha and the long and short isoforms of Gs alpha, but no Gz alpha or G12 alpha. Confluent and differentiated preadipocytes differ in having a higher content of Gi alpha 3 and G13 alpha and expressing G12 alpha. In contrast, they lack Gi alpha 1, Go alpha, and the short from of Gs alpha. The G-protein alpha subunits Gi alpha 2, Gs alpha (long isoform), and Gq/11 alpha, and G-protein beta subunits were unchanged throughout the differentiation process. By immunoblot and indirect immunofluorescence studies on confluent preadipocytes, we showed that Gi alpha 2 is present in the endoplasmic reticulum and marginally in plasma membranes and nuclei. In contrast, antibodies to Gi alpha 3 stained the Golgi apparatus. The role of G proteins on preadipocyte proliferation was studied using Bordetella pertussis toxin. Exposure of growing cells to this toxin in the presence of fetal calf serum (FCS) decreased [3H]thymidine incorporation by 40% and induced a 40% increase in doubling time. This resulted in a 30% decrease in cell number per well after 48 h. These effects of B. pertussis toxin did not appear to be related to an increase in cyclic adenosine monophosphate (cAMP) concentration, because forskolin had the opposite effect on cell proliferation. Finally, B. pertussis toxin prevented serum-induced Raf1 association to the plasma membrane, possibly by disrupting FCS-induced G beta gamma effects on the Ras/Raf1 pathway. Since Go alpha and Gi alpha 1 subunits were absent in preadipocytes, we conclude that Gi2 and/or Gi3 proteins transduce some mitogenic signals of FCS through release of G beta gamma subunits. The subcellular distribution of Gi alpha 2 and Gi alpha 3 suggests that part of their functions result from interactions with components other than the plasma membrane.  相似文献   

3.
To study the environment of a preprotein as it crosses the plasma membrane of Escherichia coli, unique cysteinyl residues were introduced into proOmpA and the genes for these mutant preproteins were fused to the gene of dihydrofolate reductase (Dhfr). A photoactivable, radiolabeled and reducible cross-linker was then attached to the unique cysteinyl residue of each purified protein. Partially translocated polypeptides were generated and arrested in their membrane transit by the folded structure of the dihydrofolate reductase domain. After photolysis to label their nearest neighbors and reduction of the disulfide bond between proOmpA-Dhfr and the cross-linker, radiolabeled cross-linker was selectively recovered with the SecA and SecY subunits of preprotein translocase. Strikingly, neither the SecE nor Band 1 subunits were cross-linked to any of the constructs and the membrane phospholipids were almost entirely shielded from cross-linking. The fact that SecY and SecA are the only membrane proteins cross-linked to the translocating chains suggests that they may form an entirely proteinaceous pathway through which secreted proteins pass during membrane transit.  相似文献   

4.
Seven out of the 13 proteins encoded by the mitochondrial genome of mammals (peptides ND1 to ND6 plus ND4L) are subunits of the respiratory NADH-ubiquinone oxidoreductase (complex I). The function of these ND subunits is still poorly understood. We have used the NADH-ubiquinone oxidoreductase of Rhodobacter capsulatus as a model for the study of the function of these proteins. In this bacterium, the 14 genes encoding the NADH-ubiquinone oxidoreductase are clustered in the nuo operon. We report here on the biochemical and spectroscopic characterization of mutants individually disrupted in five nuo genes, equivalent to mitochondrial genes nd1, nd2, nd5, nd6 and nd4L. Disruption of any of these genes in R. capsulatus leads to the suppression of NADH dehydrogenase activity at the level of the bacterial membranes and to the disappearance of complex I-associated iron-sulphur clusters. Individual NUO subunits can still be immunodetected in the membranes of these mutants, but they do not form a functional subcomplex. In contrast to these observations, disruption of two ORFs (orf6 and orf7), also present in the distal part of the nuo operon, does not suppress NADH dehydrogenase activity or complex I-associated EPR signals, thus demonstrating that these ORFs are not essential for the biosynthesis of complex I.  相似文献   

5.
The genes that encode the two different subunits of the novel electron-transferring flavoprotein (ETF) from Megasphaera elsdenii were identified by screening a partial genomic DNA library with a probe that was generated by amplification of genomic sequences using the polymerase chain reaction. The cloned genes are arranged in tandem with the coding sequence for the beta-subunit in the position 5' to the alpha-subunit coding sequence. Amino acid sequence analysis of the two subunits revealed that there are two possible dinucleotide-binding sites on the alpha-subunit and one on the beta-subunit. Comparison of M. elsdenii ETF amino acid sequence to other ETFs and ETF-like proteins indicates that while homology occurs with the mitochondrial ETF and bacterial ETFs, the greatest similarity is with the putative ETFs from clostridia and with fixAB gene products from nitrogen-fixing bacteria. The recombinant ETF was isolated from extracts of Escherichia coli. It is a heterodimer with subunits identical in size to the native protein. The isolated enzyme contains approximately 1 mol of FAD, but like the native protein it binds additional flavin to give a total of about 2 mol of FAD/dimer. It serves as an electron donor to butyryl-CoA dehydrogenase, and it also has NADH dehydrogenase activity.  相似文献   

6.
Haemophilus influenzae type b (Hib) organisms produce pili, which mediate attachment to human cells and are multimeric structures composed of a 24-kDa subunit called pilin or HifA. Although pili from other organisms contain additional proteins accessory to pilin, no structural components other than pilin have been identified in Hib pili. Previous analysis of a Hib pilus gene cluster, however, suggested that two genes, hifD and hifE, may encode additional pilus subunits. To determine if hifD and hifE encode pilus components, the genes were overexpressed in Escherichia coli and the resulting proteins were purified and used to raise polyclonal antisera. Antisera raised against C-terminal HifD and HifE fragments reacted with H. influenzae HifD and HifE proteins, respectively, on Western immunoblots. Western immunoblot analysis of immunoprecipitated Hib pili demonstrated that HifD and HifE copurified with pili. In enzyme-linked immunosorbent assays, antisera raised against a recombinant HifE protein that contained most of the mature protein reacted more to piliated Hib than to nonpiliated Hib or to a mutant containing a hifE gene insertion. Immunoelectron microscopy confirmed that the HifE antiserum bound to pili and demonstrated that the antiserum bound predominantly to the pilus tips. These data indicate that HifD and HifE are pilus subunits. Adherence inhibition studies demonstrated that the HifE antiserum completely blocked pilus-mediated hemagglutination, suggesting that HifE mediates pilus adherence.  相似文献   

7.
In mammalian cells, many secretory proteins are targeted to the endoplasmic reticulum co-translationally, by the signal recognition particle (SRP) and its receptor. In Escherichia coli, the targeting of secretory proteins to the inner membrane can be accomplished post-translationally. Unexpectedly, despite this variance, E. coli contains essential genes encoding Ffh and FtsY with a significant similarity to proteins of the eukaryotic SRP machinery. In this study, we investigated the possibility that the prokaryotic SRP-like machinery is involved in biogenesis of membrane proteins in E. coli. The data presented here demonstrate that the SRP-receptor homologue, FtsY, is indeed essential for expression of integral membrane proteins in E. coli, indicating that, in the case of this group of proteins, FtsY and the mammalian SRP receptor have similar functions.  相似文献   

8.
A 6.2-kb DNA fragment containing the genes for the nitrilotriacetate (NTA) monooxygenase of Chelatobacter heintzii ATCC 29600 was cloned and characterized by DNA sequencing and expression studies. The nucleotide sequence contained three major open reading frames (ORFs). Two of the ORFs, which were oriented divergently with an intergenic region of 307 bp, could be assigned to the NTA monooxygenase components A and B. The predicted N-terminal amino acid sequences of these ORFs were identical with those determined for the purified components. We therefore named these genes ntaA (for component A of NTA monooxygenase) and ntaB (for component B). The ntaA and ntaB genes could be expressed in Escherichia coli DH5alpha, and the gene products were visualized after Western blotting (immunoblotting) and incubation with polyclonal antibodies against component A or B. By mixing overproduced NtaB from E. coli and purified component A from C. heintzii ATCC 29600, reconstitution of a functional NTA monooxygenase complex was possible. The deduced gene product of ntaA showed only significant homology to SoxA (involved in dibenzothiophene degradation) and to SnaA (involved in pristamycin synthesis); that of ntaB shared weak homologies in one domain with other NADH:flavine mononucleotide oxidoreductases. These homologies provide no conclusive answer as to the possible evolutionary origin of the NTA monooxygenase. The deduced gene product of the third ORF (ORF1) had homology in the N-terminal region with the GntR class of bacterial regulator proteins and therefore may encode a regulator protein, possibly involved in regulation of ntaA and ntaB expression.  相似文献   

9.
According to the 'mitochondrial theory of aging' it is expected that the activity of NADH Coenzyme Q reductase (Complex I) would be most severely affected among mitochondrial enzymes, since mitochondrial DNA encodes for 7 subunits of this enzyme. Being these subunits the site of binding of the acceptor substrate (Coenzyme Q) and of most inhibitors of the enzyme, it is also expected that subtle kinetic changes of quinone affinity and enzyme inhibition could develop in aging before an overall loss of activity would be observed. The overall activity of Complex I was decreased in several tissues from aged rats, nevertheless it was found that direct assay of Complex I using artificial quinone acceptors may underevaluate the enzyme activity. The most acceptable results could be obtained by applying the 'pool equation' to calculate Complex I activity from aerobic NADH oxidation; using this method it was found that the decrease in Complex I activity in mitochondria from old animals was greater than the activity calculated by direct assay of NADH Coenzyme Q reductase. A decrease of NADH oxidation and its rotenone sensitivity was observed in nonsynaptic mitochondria, but not in synaptic 'light' and 'heavy' mitochondria of brain cortex from aged rats. In a study of Complex I activity in human platelet membranes we found that the enzyme activity was unchanged but the titre for half-inhibition by rotenone was significantly increased in aged individuals and proposed this change as a suitable biomarker of aging and age-related diseases.  相似文献   

10.
We cloned several genes encoding an Na+/H+ antiporter of Staphylococcus aureus from chromosomal DNA by using an Escherichia coli mutant, lacking all of the major Na+/H+ antiporters, as the host. E. coli cells harboring plasmids for the cloned genes were able to grow in medium containing 0.2 M NaCl (or 10 mM LiCl). Host cells without the plasmids were unable to grow under the same conditions. Na+/H+ antiport activity was detected in membrane vesicles prepared from transformants. We determined the nucleotide sequence of the cloned 7-kbp region. We found that seven open reading frames (ORFs) were necessary for antiporter function. A promoter-like sequence was found in the upstream region from the first ORF. One inverted repeat followed by a T-cluster, which may function as a terminator, was found in the downstream region from the seventh ORF. Neither terminator-like nor promoter-like sequences were found between the ORFs. Thus, it seems that the seven ORFs comprise an operon and that the Na+/H+ antiporter consists of seven kinds of subunits, suggesting that this is a novel type of multisubunit Na+/H+ antiporter. Hydropathy analysis of the deduced amino acid sequences of the seven ORFs suggested that all of the proteins are hydrophobic. As a result of a homology search, we found that components of the respiratory chain showed sequence similarity with putative subunits of the Na+/H+ antiporter. We observed a large Na+ extrusion activity, driven by respiration in E. coli cells harboring the plasmid carrying the genes. The Na+ extrusion was sensitive to an H+ conductor, supporting the idea that the system is not a respiratory Na+ pump but an Na+/H+ antiporter. Introduction of the plasmid into E. coli mutant cells, which were unable to grow under alkaline conditions, enabled the cells to grow under such conditions.  相似文献   

11.
The structural genes for the flavoprotein subunit and cytochrome c subunit of p-cresol (4-methylphenol) methylhydroxylase (PCMH) from Pseudomonas putida NCIMB 9869 (National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland) and P. putida NCIMB 9866 were cloned and sequenced. The genes from P.putida NCIMB 9869 were for the plasmid-encoded A form of PCMH, and the genes from P.putida NCIMB 9866 were also plasmid encoded. The nucleotide sequences of the two flavoprotein genes from P.putida NCIMB 9869 and P.putida NCIMB 9866 (pchF69A and pchF66, respectively) were the same except for 5 bases out of 1,584, and the translated amino acid sequences were identical. The nucleotide sequences of the genes for the cytochrome subunits of PCMH from the two bacteria (pchC69A and pchC66) varied by a single nucleotide in their 303-base sequences, and the translated amino acid sequences differed by a single residue at position 41 (Asp in PchC69A and Ala in PchC66). Both cytochromes had 21-residue signal sequences, as expected for periplasmic proteins, and these sequences were identical. On the other hand, no signal sequences were found for the flavoproteins.pchF69A and pchC69A were expressed, separately or together, in Escherichia coli JM109 and P.putida RA4007, with active PCMH produced in both bacteria. The E. coli-expressed flavocytochrome was purified. Our studies indicated that the E.coli-expressed subunits were identical to the subunits expressed in P.putida NCIMB 9869: molecular weights, isoelectric points, UV-visible spectra, and steady-state kinetic parameters were the same for the two sets of proteins. The subunits readily associated upon mixing two crude extracts of E.coli, one extract containing PchC69A and the other containing PchF69A. The courses of association of PchC69A and PchF69A were essentially identical for pure E. coli-expressed subunits and pure P. putida 9869-expressed subunits. E. coli-expressed PchC69A and PchF69A contained covalently bound heme and covalently bound flavin adenine dinucleotide, respectively, as the proteins expressed in nature.  相似文献   

12.
The transferrin binding protein genes (tbpA and tbpB) from two strains of Moraxella catarrhalis have been cloned and sequenced. The genomic organization of the M. catarrhalis transferrin binding protein genes is unique among known bacteria in that tbpA precedes tbpB and there is a third gene located between them. The deduced sequences of the M. catarrhalis TbpA proteins from two strains were 98% identical, while those of the TbpB proteins from the same strains were 63% identical and 70% similar. The third gene, tentatively called orf3, encodes a protein of approximately 58 kDa that is 98% identical between the two strains. The tbpB genes from four additional strains of M. catarrhalis were cloned and sequenced, and two potential families of TbpB proteins were identified based on sequence similarities. Recombinant TbpA (rTbpA), rTbpB, and rORF3 proteins were expressed in Escherichia coli and purified. rTbpB was shown to retain its ability to bind human transferrin after transfer to a membrane, but neither rTbpA nor rORF3 did. Monospecific anti-rTbpA and anti-rTbpB antibodies were generated and used for immunoblot analysis, which demonstrated that epitopes of M. catarrhalis TbpA and TbpB were antigenically conserved and that there was constitutive expression of the tbp genes. In the absence of an appropriate animal model, anti-rTbpA and anti-rTbpB antibodies were tested for their bactericidal activities. The anti-rTbpA antiserum was not bactericidal, but anti-rTbpB antisera were found to kill heterologous strains within the same family. Thus, if bactericidal ability is clinically relevant, a vaccine comprising multiple rTbpB antigens may protect against M. catarrhalis disease.  相似文献   

13.
14.
Antiserum to Aeromonas hydrophila A6 cell envelopes was shown in a previous study (C. Y. F. Wong, G. Mayrhofer, M. W. Heuzenroeder, H. M. Atkinson, D. M. Quinn, and R. L. P. Flower, FEMS Immunol. Med. Microbiol. 15:233-241, 1996) to protect mice against lethal infection by this organism. In this study, colony blot analysis of an A. hydrophila genomic library using antiserum to A. hydrophila A6 cell envelopes revealed a cosmid clone expressing a 30-kDa protein which has not been described previously in aeromonads. The nucleotide sequence of a 3.9-kb fragment derived from this cosmid which expressed the 30-kDa protein revealed two potential open reading frames (ORFs) with homology to known immunophilin proteins. ORF1 encoded a 212-amino-acid protein (molecular mass, 22.4 kDa) with 56% identity to the immunophilin SlyD protein of Escherichia coli. ORF1 was subsequently designated ilpA (immunophilin-like protein). ORF3 encoded a potential gene product of 268 amino acids with a typical signal sequence and a predicted molecular size of 28.7 kDa. The inferred amino acid sequence showed 46% identity with the sequence of the FkpA protein of E. coli and 40% identity with the sequence of the macrophage infectivity potentiator (Mip) protein of Legionella pneumophila. ORF3 was designated fkpA (FK506 binding protein) by analogy with the E. coli FkpA protein. Expression of the FkpA protein was confirmed by Western blot (immunoblot) analysis, which detected a 30-kDa protein, with antiserum to the Mip protein of Legionella longbeachae and a specific antiserum to anA. hydrophila 30-kDa membrane protein. PCR and Southern analysis showed that a DNA sequence encoding FkpA was found in all 178 aeromonads of diverse origins tested. A nonpolar insertion mutation in the fkpA gene did not attenuate virulence in a suckling mouse model nor did it affect the expression of hemolysins or DNase. This suggests that either the fkpA gene is not essential in the virulence of A. hydrophila under these conditions or there are other genes in A. hydrophila coding for proteins with similar functions.  相似文献   

15.
We have previously shown that the synthesis of ribosomal proteins (r proteins) in E. coli cells is under stringent control (Dennis and Nomura, 1974). Since guanosine tetraphosphate (ppGpp) has been implicated in stringent control, we examined the effects of ppGpp on the in vitro synthesis of r proteins directed by DNA from transducing phage lambdafus3 and lambdarifd18. lambdafus3 carries genes for protein elongation factors EF-Tu and EF-G, and RNA polymerase subunit alpha, in addition to genes for approximately 27 r proteins. lambdarifd18 carries genes for EF-Tu, RNA polymerase subunits beta and beta1, and a set of rRNAs, in addition to genes for approximately five r proteins. We have shown that low concentrations of ppGpp (0.2-0.3 mM) specifically inhibit DNA-dependent r protein synthesis in this system, and that this inhibition takes place directly, rather than as a consequence of the inhibition of rRNA synthesis by ppGpp. In addition, we have also shown that ppGpp inhibits the synthesis of EF-G, EF-Tu, and RNA polymerase subunit alpha, as well as rRNAs.  相似文献   

16.
Several species of enterobacteria are able to utilize citrate as carbon and energy source. Under oxic conditions in the presence of a functional tricarboxylic acid cycle, growth on this compound solely depends on an appropriate transport system. During anaerobiosis, when 2-oxoglutarate dehydrogenase is repressed, some species such as Klebsiella pneumoniae and Salmonella typhimurium, but not Escherichia coli, are capable of growth on citrate by a Na+-dependent pathway forming acetate, formate, and CO2 as products. During the last decade, several novel features associated with this type of fermentation have been discovered in K. pneumoniae. The biotin protein oxaloacetate decarboxylase, one of the key enzymes of the pathway besides citrate lyase, is a Na+ pump. Recently it has been shown that the proton required for the decarboxylation of carboxybiotin is taken up from the side to which Na+ ions are pumped, and a membrane-embedded aspartate residue that is probably involved both in Na+ and in H+ transport was identified. The Na+ gradient established by oxaloacetate decarboxylase drives citrate uptake via CitS, a homodimeric carrier protein with a simultaneous-type reaction mechanism, and NADH formation by reversed electron transfer involving formate dehydrogenase, quinone, and a Na+-dependent NADH:quinone oxidoreductase. All enzymes specifically required for citrate fermentation are induced under anoxic conditions in the presence of citrate and Na+ ions. The corresponding genes form a cluster on the chromosome and are organized as two divergently transcribed operons. Their co-ordinate expression is dependent on a two-component system consisting of the sensor kinase CitA and the response regulator CitB. The citAB genes are part of the cluster and are positively autoregulated. In addition to CitA/CitB, the cAMP receptor protein (Crp) is involved in the regulation of the citrate fermentation enzymes, subjecting them to catabolite repression.  相似文献   

17.
The pdd genes encoding adenosylcobalamin-dependent diol dehydrase of Klebsiella oxytoca were cloned by using a synthetic oligodeoxyribonucleotide as a hybridization probe followed by measuring the enzyme activity of each clone. Five clones of Escherichia coli exhibited diol dehydrase activity. At least one of them was shown to express diol dehydrase genes under control of their own promoter. Sequence analysis of the DNA fragments found in common in the inserts of these five clones and the flanking regions revealed four open reading frames separated by 10-18 base pairs. The sequential three open reading frames from the second to the fourth (pddA, pddB, and pddC genes) encoded polypeptides of 554, 224, and 173 amino acid residues with predicted molecular weights of 60,348 (alpha), 24,113 (beta), and 19,173 (gamma), respectively. Overexpression of these three genes in E. coli produced more than 50-fold higher level of functional apodiol dehydrase than that in K. oxytoca. The recombinant enzyme was indistinguishable from the wild-type one of K. oxytoca by the criteria of polyacrylamide gel electrophoretic and immunochemical properties. It was thus concluded that these three gene products are the subunits of functional diol dehydrase. Comparisons of the deduced amino acid sequences of the three subunits with other proteins failed to reveal any apparent homology.  相似文献   

18.
The ftsE(Ts) mutation of Escherichia coli causes defects in cell division and cell growth. We expressed alkaline phosphatase (PhoA) fusion proteins of KdpA, Kup, and TrkH, all of which proved functional in vivo as K+ ion pumps, in the mutant cells. During growth at 41 degrees C, these proteins were progressively lost from the membrane fraction. The reduction in the abundance of these proteins inversely correlated with cell growth, but the preformed proteins in the membrane were stable at 41 degrees C, indicating that the molecules synthesized at the permissive temperature were diluted in a growth-dependent manner at a high temperature. Pulse-chase experiments showed that KdpA-PhoA was synthesized, but the synthesized protein did not translocate into the membrane of the ftsE(Ts) cells at 41 degrees C and degraded very rapidly. The loss of KdpA-PhoA from the membrane fractions of ftsE(Ts) cells was suppressed by a multicopy plasmid carrying the ftsE+ gene. While cell growth stopped when the abundance of these proteins decreased 15-fold, the addition of a high concentration of K+ ions specifically alleviated the growth defect of ftsE(Ts) cells but not cell division, and the cells elongated more than 100-fold. We conclude that one of the causes of growth cessation in the ftsE(Ts) mutants is a defect in the translocation of K+-pump proteins into the cytoplasmic membrane.  相似文献   

19.
Three genes, narH, narJ and narI, of the membrane-bound nitrate reductase operon of the denitrifying bacterium Thiosphaera pantotropha have been identified and sequenced. The derived gene products show high sequence similarity to the equivalent (beta, putative delta and gamma) subunits of the two membrane-bound nitrate reductases of the enteric bacterium Escherichia coli. All iron-sulphur cluster ligands proposed for the E. coli beta subunits are conserved in T. pantotropha NarH. Secondary structure analysis of NarJ suggests that this protein has a predominantly alpha-helical structure. Comparison of T. pantotropha NarI with the b-haem-binding integral membrane subunits of the E. coli enzymes allows assignment of His-53, His-63, His-186 and His-204 (T. pantotropha NarI numbering) as b-haem axial ligands and the construction of a three-dimensional model of this subunit. This model, in which the two b-haems are in different halves of the membrane bilayer, is consistent with a mechanism of energy conservation whereby electrons are moved from the periplasmic to the cytoplasmic side of the membrane via the haems. Similar movement of electrons is required in the membrane-bound uptake hydrogenases and membrane-bound formate dehydrogenases. We have identified two pairs of conserved histidine residues in the integral membrane subunits of these enzymes that are appropriately positioned to bind one haem towards each side of the membrane bilayer. One subunit of a hydrogenase complex involved in transfer of electrons across the cytoplasmic membrane of sulphate-reducing bacteria has structural resemblance to NarI.  相似文献   

20.
Respiratory chain complex I is a complicated enzyme of mitochondria, that couples electron transfer from NADH to ubiquinone to the proton translocation across the inner membrane of the organelle. The fungus Neurospora crassa has been used as one of the main model organisms to study this enzyme. Complex I is composed of multiple polypeptide subunits of dual genetic origin and contains several prosthetic groups involved in its activity. Most subunits have been cloned and those binding redox centres have been identified. Yet, the functional role of certain complex I proteins remains unknown. Insight into the possible origin and the mechanisms of complex I assembly has been gained. Several mutant strains of N. crassa, in which specific subunits of complex I were disrupted, have been isolated and characterised. This review concerns many aspects of the structure, function and biogenesis of complex I that are being elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号