首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
Ⅰ-Ⅱ复合型裂纹脆性断裂的最小J_2准则   总被引:16,自引:3,他引:13  
实际工程的结构中,裂纹多处于复合型状态,因此复合型裂纹断裂的理论研究有着更为重要的理论意义和实用价值。本文以Ⅰ-Ⅱ复合型裂纹为研究对象,将偏应力张量的第二不变量2J作为判定依据,预测了裂纹起裂的角度以及开裂荷载,并与一些实验数据进行了比较,符合得也较好。计算结果进一步表明了在裂纹起裂引起的应变能转化过程中,起主要作用的是形状改变比能这一事实,由此得出了另一个结论是在裂纹尖端,平行于裂纹方向的应力级数展开式中非奇异项对裂纹的开裂角度以及开裂荷载是有影响的。  相似文献   

2.
脆性材料复合型裂纹的断裂准则   总被引:1,自引:0,他引:1  
实际工程中,脆性材料中的裂纹多处于复合型受力状态,因此,确定脆性材料中的复合型裂纹起裂角和临界荷载有着重要的理论意义和实用价值。以复合型裂纹为研究对象,将裂纹尖端的最小无量纲塑性区尺度ρmin和广义合成偏应力强度理论相结合,建立脆性材料复合型裂纹的断裂准则,预测裂纹起裂角及临界荷载,将其结果与最大周向应力准则和应变能密度因子准则相比较发现,基于该文方法得到的临界荷载曲线大于最大周向应力准则得到的临界荷载曲线,与应变能密度因子准则得到的临界荷载曲线比较接近。因而,表明了用该文的方法来预测脆性材料复合型裂纹起裂角和临界荷载是行之有效的。  相似文献   

3.
董蕙茹  郭万林 《工程力学》2004,21(4):123-127
完成了飞机结构铝合金LC4CS的2、4、8和14mm四种不同厚度试样在I+II复合加载条件下的复合型断裂实验,系统分析了厚度和复合载荷对裂纹起裂角的影响,揭示了常用复合型断裂准则的厚度适用范围,用三维断裂理论对结果进行了讨论。结果表明:复合型裂纹起裂角具有明显的厚度效应;最大周向应力准则能够准确预测薄试样和厚试样(厚度为2 mm 和14 mm)在各种复合加载条件下的起裂方向,但是不适用于中间厚度的试样,尤其是8 mm厚度的情况。最大三轴应力准则试图考虑裂纹尖端三维约束对裂纹起裂的影响,但是结果并不理想。最小应变能密度因子理论的预测结果与最大周向应力准则的预测结果非常接近,但同样不能预测8mm厚度试样的起裂方向。非常有必要建立一个普遍适用的三维复合型断裂准则。  相似文献   

4.
混凝土Ⅰ-Ⅱ复合型断裂判据研究   总被引:6,自引:0,他引:6  
本文基于混凝土Ⅰ-Ⅱ复合型断裂的试验研究,考虑到裂纹尖端混凝土双向受力时的破坏特征,提出了一个新的判断混凝土Ⅰ-Ⅱ复合型开裂的准则-复合应力准则。本文进行了一组偏直裂纹三点弯曲梁的试验,并用奇异元与等参元相结合的有限元法计算了裂纹失稳扩展时的应力强度因子KⅠ、KⅡ,采用试验结果确定了复合应力准则中的参数。与其它复合型断裂准则及国内试验结果的对比表明,本文提出的准则准确性好,适应性广。  相似文献   

5.
形状改变比能的J~*积分及应用   总被引:1,自引:1,他引:0  
蒋玉川 《工程力学》2000,17(6):110-116
本文引进形状改变比能的概念,对平面裂纹起裂扩展问题进行了讨论,给出一个与路径无关的J*积分,通过I型裂纹的应用,其结果与现行公开发表的文献或手册结果一致。  相似文献   

6.
混凝土Ⅰ—Ⅱ复合型断裂判据研究   总被引:1,自引:0,他引:1  
许斌  江见鲸 《工程力学》1995,12(2):13-21
本文基于混凝Ⅰ-Ⅱ复合型断裂的试验研究,考虑到裂纹尖端混凝土双向受力时的破坏特征,提出了一个新的判断混凝土Ⅰ-Ⅱ复合型开裂的准则-复合应力准则。本文进行了一组偏直裂纹三点弯曲梁的试验,并用奇异元与等参元相结合的有限元法计算了裂纹失稳扩展时的应力强度因子KⅠ、KⅡ,采用试验结果确定了复合应力准则中的参数。与其它复合型断裂准则及国内试验结果的对比表明,本文提出的准则准确性好,适应性广。  相似文献   

7.
本文综合考虑了τ_θ、τ_(θr)和τ_(θz)对裂纹扩裂的影响,提出了一个新的复合型断裂准则,与试验结果比较是令人满意的  相似文献   

8.

工程结构在制造工艺过程中或使用期间会产生裂纹,对结构断裂路径的预测和研究是防治工程安全问题发生的重要手段。在考虑裂纹尖端应力场常数项T应力的基础上对传统的最大周向应力准则(Maximum tangential stress criterion, MTS)和最小应变能密度因子准则(Minimum strain energy density criterion, SED)进行修正,采用Python语言对ABAQUS的前、后处理和有限元计算模块进行二次开发,通过计算最优解的粒子群算法(Particle swarm optimization, PSO)将修正后的准则编入裂纹自动扩展程序脚本中。利用上述二次开发程序对初始纯I型裂纹的扩展路径进行模拟,结果表明:采用ABAQUS脚本程序模拟结果与相关文献实验结果吻合,表明了程序的有效性,进而实现考虑T应力的多种断裂准则对裂纹扩展路径的预测;当T应力值处于一定范围内时,修正的MTS准则无法预测裂纹发生的偏转现象,扩展路径呈直线,此时可采用修正的SED准则进行预测。

  相似文献   

9.
研究了巷道内纯Ⅰ型及Ⅰ/Ⅱ复合型裂纹在冲击载荷作用下的动态扩展特征,预制裂纹位于巷道拱顶圆弧区域与巷道对称轴线平行,并与巷道对称轴线的间距不同。以中低速落锤冲击试验机对砂岩巷道模型试样进行动态冲击加载,巷道内裂纹的起裂时间与扩展特性采用粘贴在裂纹尖端的应变片进行相应的测试分析。采用AUTODYN模拟巷道内裂纹的扩展路径,总体上数值结果与试验结果比较吻合,采用ABAQUS计算裂纹的应力强度因子,结合试验-数值法确定巷道模型内预制裂纹的起裂韧度。研究结果表明:Ⅰ/Ⅱ复合型裂纹起裂过程中,既有Ⅰ型起裂韧度又有Ⅱ型起裂韧度,其比例大小与裂纹距离巷道对称轴的距离有关;纯Ⅰ型与Ⅰ/Ⅱ复合型裂纹的扩展行为有很大差别,纯Ⅰ型裂纹起裂沿着原裂纹方向竖直向上扩展,而Ⅰ/Ⅱ复合型裂纹与原裂纹成一定角度起裂,形成翼型裂纹,最后沿着最大主应力方向进行扩展,并且复合型裂纹在扩展过程中,存在明显的拐点特征。  相似文献   

10.
混凝土结构Ⅰ型裂纹裂尖塑性区研究   总被引:2,自引:1,他引:1  
应用双剪统一强度理论,研究了Ⅰ型裂纹的塑性变形问题。给出了包含反映材料拉压性能差异的参数拉压比及反映中间主应力效应的参数b的Ⅰ型裂纹裂尖塑性区形状和大小的统一解。已有的Tresca准则、Mises准则和Mohr-Coulomb准则解均是本文的特例或线性逼近。针对混凝土结构,画出了不同参数b情况下的裂尖塑性区半径变化图。得出了材料拉压比对Ⅰ型裂纹裂尖塑性区影响很大。b对Ⅰ型裂纹裂尖塑性区影响随拉压比的不同而不同,拉压比较大时,b对塑性区影响大,拉压比较小时,b对塑性区影响小的结论。该统一解可以适应于各种不同材料,能充分发挥材料潜力,具有普遍性和广泛的适应性,有一定的工程应用价值。结论对于研究各种材料的断裂问题有参考作用。  相似文献   

11.
This paper presents a successful implementation of the virtual crack closure integral method to calculate the stress intensity factors of an interfacial crack. The present method would compute the mixed-mode stress intensity factors from the mixed-mode energy release rates of the interfacial crack, which are easily obtained from the crack opening displacements and the nodal forces at and ahead of the crack tip, in a finite element model. The simple formulae which relate the stress intensity factors to the energy release rates are given in three separate categories: an isotropic bimaterial continuum, an orthotropic bimaterial continuum, and an anisotropic bimaterial continuum. In the example of a central crack in a bimaterial block under the plane strain condition, comparisons are made with the exact solution to determine the accuracy and efficiency of the numerical method. It was found that the virtual crack closure integral method does lead to very accurate results with a relatively coarse finite element mesh. It has also been shown that for an anisotropic interfacial crack under the generalized plane strain condition, the computed stress intensity factors using the virtual crack closure method compared favorably with the results using the J integral method applied to two interacting crack tip solutions. In order for the stress intensity factors to be used as physical variables, the characteristic length for the stress intensity factors must be properly defined. A study was carried out to determine the effects of the characteristic length on the fracture criterion based the mixed-mode stress intensity factors. It was found that the fracture criterion based on the quadratic mixture of the normalized stress intensity factors is less sensitive to the changes in characteristic length than the fracture criterion based on the total energy release rate along with the phase angle.This work has been supported by ONR, with Dr. Y. Rajapakse as the program official.  相似文献   

12.
In this work fracture characterization of wood under mixed-mode I/II loading is addressed. The mixed-mode bending test is used owing to its aptitude for easier alteration of mode ratio. Experimental tests were performed covering a wide range of mode ratios in order to obtain a mixed-mode fracture criterion for the maritime pine (Pinus pinaster Ait.) in the RL crack propagation system. A data reduction scheme based on beam theory and crack equivalent concept was used to overcome some difficulties inherent to the test. The method does not require crack length monitoring during propagation and provide an entire resistance curve allowing easier identification of the fracture energy. A numerical analysis using cohesive elements was also performed to validate the method. The linear energetic fracture criterion was proved to be the most adequate to describe the failure envelop of this wood species.  相似文献   

13.
Ductile sheet structures are frequently subjected to mixed mode loading, resulting that the structure is under the influence of a mixed mode stress field. Instances of interest are when stable crack growth occurs and when the crack-tip is propagating in this complex mixed-mode condition, prior to final fracture. Purposely designed apparatus was built to test thin-sheets of steel (Grade: DX51D) under mixed-mode I/II. These tests, under plane stress conditions, also investigated the effect of thickness on the specific essential work of fracture or the fracture toughness of the material under quasi-static cracking conditions. The fracture toughness is evaluated under incremental mixed-mode loading conditions. The direction of the propagating crack path and fracture type were observed and discussed as the loading mixity was varied. Whilst the specific essential work of fracture or fracture toughness was obtained using the energy approach, the theoretical analysis of the fracture type and direction of crack path were based on the crack tip stresses and fracture criterions of maximum hoop stress and maximum shear stress along with the utilisation of Hill’s theory. For mixed-mode I/II loading, the variation in the fracture toughness contributions ratios are evaluated and used predicatively using the established energy criterion approach to the crack tip stress intensity approach. The comparison between the theoretical directions of the crack path, failure mode propagation are in good agreement with those obtained from experimental testing indicating the definite link between both approaches.  相似文献   

14.
In this paper a unique criteria, crack surface relative displacement, is used to evaluate mixed-mode (mode I and mode II) fracture mechanics problems. Using a conic-section simulation of a crack surface, relationships among the energy release rate G, the stress intensity factors (K1 and K2), and crack surface relative displacement are developed. Because the crack surface relative displacement criterion makes direct use of the displacements on the crack surface, instead of the stress field in the region of the crack tip, it simplifies numerical analysis of crack problems. A finite element model of a slant-center-cracked plate is employed to demonstrate the applicability of crack surface relative displacement to mixed-mode problems. The numerical results obtained agree well with analytical solutions. In addition, it is illustrated that similar to K1, K2, and G (J in LEFM), crack surface, relative displacement can serve as a fracture criterion for general mixed-mode I and II fracture mechanics problems.  相似文献   

15.
A “mutual integral” approach is used to calculate the mixed-mode stress intensity factors for a free-edge delamination crack in a laminate under tensile loading conditions. This “mutual integral” approach, for generalized plane strain conditions, is based on the application of the path-independent J integral to a linear combination of three solutions: one, the problem of the laminate to be solved using the quasi 3-D finite element method, the second, an “auxiliary” solution with a known asymptotic singular solution, and the third, the particular solution due to the out-of-plane loading. A comparison with the exact solutions is made to determine the accuracy and efficiency of this numerical method. With this “mutual integral” approach, it was found that the calculated mixed-mode stress intensity factors of the free-edge delamination crack remain relatively constant as the crack propagates into the laminate. It was also found that the fracture criterion based on the mixed-mode stress intensity factors is more consistent with the experimental observations than the criterion based on the total energy release rate, and hence demonstrates the importance of the ability to calculate each individual component of the stress intensity factors. Furthermore, it was found that the fracture toughness measurements from double cantilever beam specimens can be used directly to predict the onset of delamination crack growth between two dissimilar laminae. Using these fracture toughness measurements from the double cantilever beam specimens, some examples are given to show that the fracture criterion based on the mixed-mode stress intensity factors can accurately predict the failure load for various laminates under tensile loading conditions.  相似文献   

16.
A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer foot, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.  相似文献   

17.
Study of slant fracture in ductile materials   总被引:1,自引:1,他引:0  
Slant fracture is widely observed during crack growth in thin sheet specimens made of ductile materials, providing a good case for investigating three-dimensional criteria for mixed-mode ductile fracture. To gain an understanding of slant fracture events and to provide insight for establishing a slant fracture criterion, stable tearing fracture experiments on combined tension-torsion (nominal mixed-mode I/III) specimens and nominal Mode I Arcan specimens made of Al 2024-T3 are analyzed using the finite element method under three-dimensional conditions. Two types of finite element models are considered for the study of slant fracture: (a) combined tension-torsion specimens containing stationary, flat and slant cracks subject to loads corresponding to the onset of crack growth, and (b) stable tearing crack growth with slanting in a nominal Mode I Arcan specimen. Analysis results reveal that there exists a strong correlation between certain features of the crack-front effective plastic strain field and the orientation of the slant fracture surface. In particular, it is observed that (a) at the onset of crack growth in the combined tension-torsion experiments, the angular position of the maximum effective plastic strain around the crack front serves as a good indicator for the slant fracture surface orientation during subsequent crack growth; and (b) during stable tearing crack growth in the Mode I Arcan specimen, which experiences a flat-to-slant fracture surface transition, the crack growth path on each section plane through the thickness of the specimen coincides with the angular position of the maximum effective plastic strain around the crack front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号