首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43°N, 54.45°E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m2, respectively. The highest one-minute average daily solar radiation was 1041 W/m2. Yearly average daily energy input was 18.48 MJ/m2/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture.  相似文献   

2.
This paper presents actual measurements of direct solar radiation in Abu Dhabi (24.43°N, 54.45°E) with the existing meteorological conditions encountered during the measurement throughout the year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly statistics of direct solar radiation were calculated from the one-minute average recorded by a Middleton Solar DN5-E Pyroheliometer. The highest daily and monthly mean solar radiation values were recorded as 730 and 493.5 W/m2, respectively. The highest one-minute average daily solar radiation was recorded as 937 W/m2. In addition to direct beam radiation, the daily average clearness indexes, surface temperature variations, wind speeds and relative humidity variations are discussed. When possible, direct beam radiation and some meteorological data are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar-energy model. The measured data (direct beam radiation and meteorological) are in close agreement with the NASA SSE model with some discrepancy.  相似文献   

3.
This paper presents a study of the solar radiation data measured in Istanbul (41.1°N, 29.0°E) during 1992 and 1993. The monthly and annual average values of total solar radiation and clearness index are analysed. The monthly averages of daily total radiation are 1.23 kW h m−2 day−1 for January and 6.55 kW h m−2 day−1 for July. The annual average value of daily total radiation is 3.81 kW h m−2 day−1. The monthly averages of clearness index for January and July are 0.28 and 0.50, respectively. The annual average value of clearness index is 0.38. In the second part of the study, the seasonal relative frequency of hourly total radiation and clearness index is studied. 46% of the annual data corresponds to a value greater than 300 W m−2. The annual average frequency of clear hours is 24%. The analysis points to the conclusion that solar radiation will be efficient and useful between April and September for heating purposes. A polynomial relationship is developed between hourly clearness index and hourly fractional sunshine duration. Some statistical tests are used to check this relationship for four different ranges of optical air mass.  相似文献   

4.
Using 9 years of solar radiation data, we established a simple model to calculate the monthly mean global solar radiation on a horizontal surface in Tabouk (28.38° N, 36.6° E, Saudi Arabia). The model correlates the global solar radiation with five meteorological parameters. These parameters are the perceptible water vapor, air temperature, relative humidity, atmospheric pressure, and the mean monthly daily fraction of possible sunshine hours. The estimated global radiation from the model was compared with the measured values using the mean bias error (MBE), coefficient of correlation (R), root mean square error (RMSE), and mean percentage error (MPE). The t statistics were also applied as another indication of suitability. The model has a high coefficient of correlation (R = 0.99), MBE = −14 × 10−4 kW h/m2, RMSE = 0.10 kW h/m2, and MPE = −0.03%. It is believed that the model developed in this work is applicable for estimating, with great accuracy. The monthly mean daily global radiation at any site having similar conditions to those found in Tabouk.Furthermore, 29 regression models available in the literature were used to estimate the global solar radiation data for Tabouk. The selected models were different in terms of the variables they use and in the number of the variables they contained. The models were compared on the basis of the statistical errors considered above. Apart from Abdall’s model, which showed a reasonable estimate (MPE = −2.04%, MBE = −0.22 kW h/m2, and RMSE = 0.59 kW h/m2), all the models under or overestimate the measured solar radiation values. Comparisons between these models and the produced model, from this study, were also considered. According to the statistical results, the model of Abdall showed the prediction closest to those estimated using the developed model.  相似文献   

5.
Monthly mean values of daily total solar radiation were obtained for the widest possible network acrossAustralia. Bureau of Meteorology sources yielded 11 stations with long term records of both measured daily total solar radiation and sunshine hour values. Monthly modified Angstrom equations were developed from these data and used to estimate radiation values for a further 90 stations in the Bureau of Meteorology network that had sunshine hour data. Measured daily total solar radiation data were obtained from a variety of sources mostly outside the Bureau of Meteorology network for an additional 33 stations. Finally, estimates of solar radiation from detailed cloud cover data were used for a further 12 stations, selected because they filled in significant gaps in coverage. These various sources yielded a total of 146 sets of monthly mean values of daily total solar radiation. For each month optimal surfaces, which were functions of position only, were fitted to this network of values using Laplacian smoothing splines with generalized cross validation. Residuals from the fitted surfaces at the data points were acceptably low. Fitted surfaces which included, in addition to position variables, a cloudiness index based on a transform of mean monthly precipitation further reduced these residuals. The latter fitted surfaces permit estimation of monthly mean values of total daily solar radiation at any point on the continent with a root mean square predictive error of no more than 1.25 MJ m−2 day−1 (5.2 per cent of the network mean) in summer and 0.74 MJ m−2 day−1 (5.5 per cent of the network mean) in winter.  相似文献   

6.
Very simple models have been made to estimate the monthly and daily average total, diffuse and beam solar irradiation on a horizontal surface in Bahrain. The direct normal solar irradiation has also been measured and modeled using the rotating shadow band pyrometer. The monthly average estimation was found to be more accurate than the daily average, and modeling the direct solar irradiation is the most inaccurate followed by the diffuse; since these two are very susceptible to atmospheric pollution and weather conditions. The highest actually measured monthly average total for direct, diffuse and direct normal solar irradiation was found to be 585, 383, 343 and 716 W m−2, respectively, while the lowest actually measured monthly average values were 373, 242, 96 and 342 W m−2, respectively. The results of the total solar irradiation in four different sites in Bahrain were found to have similar values (the maximum hourly values ranged from 820 to 1000 W m−2 at mid-day in June) which is expected since the area of Bahrain is nearly 700 km2.  相似文献   

7.
R.H.B. Exell 《Solar Energy》1976,18(4):349-354
Geographical, seasonal, and diurnal variations of global solar radiation in Thailand are surveyed. Seasonal effects are shown by separate studies for eight 1.5 month periods of the year defined by standard solar declination values. Detailed maps are given of the geographical distribution of solar radiation prepared from data on cloudiness at 44 stations, duration of sunshine at 18 stations, and linear regressions relating radiation to sunshine at Chiang Mai and Bangkok. The highest mean values are above 19.5 MJ m−2 d−1 and are widespread in spring. The lowest values are below 15.0 MJ m−2 d−1 in restricted localities with heavy rainfall in autumn.Rough estimates of diffuse solar radiation and atmospheric turbidity are made from the radiation-sunshine regression parameters. Diffuse radiation averages 8.4 MJ m−2 d−1. Turbidity at Chiang Mai is high in spring and low in summer and autumn; at Bangkok it is high throughout the year.The diurnal variation of global solar radiation determined from hourly measurements at Chiang Mai and Bangkok is analysed. The mean midday radiation fluxes range from 0.80 kW m−2 in spring to 0.60 kW m−2 in autumn. On the average the radiation received in the afternoon is slightly less than that received in the morning.  相似文献   

8.
The solar radiation climate of Athalassa, Cyprus, is reported upon in detail. The database utilized in this analysis consisted of daily global and diffuse radiation on a horizontal surface, and global radiation on tilted surfaces, together with the calculated daily values of horizontal beam radiation. In addition, the data reported here include maximum and minimum temperature, relative humidity and percentage of possible sunshine. Monthly average hourly global and diffuse radiation for the time interval 5 a.m.–7 p.m. are reported and analyzed. The annual means of the daily global, diffuse and beam solar radiation on a horizontal surface are about 17.26, 5.75 and 12.35 MJ m−2, respectively. The average monthly fraction of daily horizontal global radiation that is beam radiation varies from 0.61 in February to 0.77 in September. The average monthly clearness index varies from 0.636 in July to 0.491 in December, whereas the ratio of diffuse to global radiation varies from 0.494 in February to 0.257 in July. The solar radiation climate of the Cyprus environs has also been compared to those reported for two neighbouring countries. We conclude, based upon the above analysis, that Athalassa and its environs are characterized on average, by relatively high daily irradiation rates, both global and beam, and a relatively high percentage of clear days.  相似文献   

9.
Study of the climatology of global solar radiation is considered very useful for assessing the potential efficiency of systems designed for solar energy utilization. This paper explores some aspects of solar radiation climatology in Iraq. Analysis of the monthly averages global solar radiation and the general atmospheric transparency for the period 1971–1985 for three different climatological zones (Mosul, Baghdad, Nasiriyah) are discussed. The frequency distribution of daily clearness index for each station is determined using histograms of frequencies. The percentage number of days with solar radiation and sunshine duration values below a certain value is analyzed and discussed. The period of successive days having radiation less than 5 MJ/m2 · day−1 and 10 MJ/m2 · day−1 is examined and presented graphically.  相似文献   

10.
Daily global insolation on a horizontal surface in Botswana is recorded continuously at several synoptic stations and at the University of Botswana's Physics Department. Over a number of years, daily total insolation on a tilted surface (β = −30°) was recorded at the Botswana Technology Centre. Hourly, and instantaneous direct normal, global, diffuse and UV-components are continuously recorded at the University of Botswana. All these measurements are done with standard EPLAB equipment.It is found out that the instantaneous direct normal radiation at Solar noon can be as high as 1150 W·m−2; and that at 30 min before sunset it can be above 600 W·m−2; and it can also be as high as 100 W·m−2 at sunset or sunrise moments (i.e. with half of the solar disk under the horizon).Daily direct normal solar radiation can exceed 45 MJ·m−2. Mean daily global radiation varies from 31 MJ·m−2 in December to 16 MJ·m−2 in June. Such big values of daily direct normal and global radiation are explained by low humidity and low turbidity.Cases of an anomalous phenomenon which lead to an abnormally big phase shift when direct normal radiation is increasing greatly after Solar noon are observed, and discussed. It is also found that when humidity is low and visibility is high, hourly Ig values recorded with a pyranometer can be less than Ibn (cosθz) + Id-values. This discrepancy could be quite common for regions where humidity and turbidity are low. The trend in the behaviour of the UV-component during the last five years is also analyzed and discussed. The conclusion is made that the ozone layer over Botswana is continuously being depleted.  相似文献   

11.
In this study, daily global radiation for Toledo (39°53′05″N, 4°02′58″W, Spain) were utilized to determine monthly-specific equations for estimating global solar radiation from sunshine hours and to obtain improved fits to monthly Angström–Prescott's coefficients.Models were compared using the root mean square error (RMSE), the mean bias error (MBE) and the t-statistic. According to our results, all the models fitted the data adequately and can be used to estimate the specific monthly global solar radiation.Average RMSE and MBE for comparison between observed and estimated global radiation were 1.260 and −0.002 MJ m−2 day−1, respectively. The t-statistic was used as the best indicator, this indicator depends on both, and is more effective for determining the model performance. The agreement between the estimated and the measured data were remarkable and the method was recommended for use in Toledo (Spain).  相似文献   

12.
A series of daily measurements of global solar radiation on horizontal surface realized during the period 1978–1982, in Burgos, Spain, is analysed. The mean decadic values show fluctuations, in the spring and at the beginning of the summer especially. The absolute maximums generally appear in July with values that oscillate between 23 and 26 MJ m−2, and the minimums in January or December with values between 4 and 5 MJ m−2. Averaging the analogous months we obtain the maximums in July with a value of 23 MJ m−2. We have studied the elemental statistic characteristics and we remark that the interquartile range is small in the winter months and increases in the spring and summer. The number of the days in which the radiation has remained inferior to a given value, has been calculated in the frequency analysis, remarking that in the days corresponding to the period of the winter appear radiation values inferior to 10 MJ m−2 and only 3% of July days are below this value. We have defined and determined the potential radiation and have calculated the extraterrestrial radiation in order to know the attenuation of global radiation in its passage through the atmosphere. We remark that the energy percentage transmitted by the atmosphere increases from winter to summer, a maximum value of 59% is obtained in July and a minimum of 30% in December. The atmospheric transparency without clouds oscillates between 71% in the spring and 62% in the winter.  相似文献   

13.
Tables of monthly mean solar radiation parameters are computed from detailed cloud cover information. The parameters include direct and global daily total energy inputs to horizontal, inclined and “sun-tracking” surfaces. Comparison with measured global radiation at 12 stations reveals virtually no systematic error in the computation scheme, and an error of 2MJ m−2 day−1 in the worst case month of any station.  相似文献   

14.
Analysis of solar ultraviolet radiation (295–385 nm) and total global radiation (290–3000 nm), continuously recorded at a station in Makkah (21.5°N, 39.8°E) for 17 months in 1987–1988, has shown that the monthly average daily UV was 200 Wh m−2. The ratio of UV to total global radiation varied from a maximum of 0.043 to a minimum of 0.028. A drop of 25% below the average 0.036, detected in the summer months, is attributed to scattering and absorption by dust and low tropospheric ozone. Comparison with Dhahran and Kuwait has shown that the effect was localised. A study of diurnal variation and clear, midday hourly radiation and the ratio of UV to global radiation, , also revealed an overall depletion in the summer months, despite the relative decrease in attenuation of Iv during cloudy days and at low solar altitudes. Multiple regressions of Hv and Iv on relevant variables with coefficients of determination exceeding 90% have been performed. Frequency distribution of daily UV is briefly discussed.  相似文献   

15.
Monthly averaged total daily global and direct incident solar radiation are presented. Maximum, averaged, and the minimum values of both global and direct incident radiation are given over the measuring period 1990–1996. The global and direct incident radiation at noon hour are also presented. A mathematical model for maximum total daily GR is given as a function of the number of the month of the year. Two other mathematical regressions were also obtained for the monthly averaged total daily global radiation and for monthly averaged total daily direct incident solar radiation.  相似文献   

16.
Data presented here for continuous measurements of global (285-2800?nm) and ultraviolet solar radiation (295-385?nm) are on horizontal level, which have been carried out for three years in Kuwait from January 96 to December 98. The ratio of monthly daily ultraviolet to global solar radiation was found to lie between 4.07% and 5.4%. The highest and lowest intensity monthly-daily recorded values for global radiation were 9.29 and 0.45?Kwh/m2 but for ultraviolet 445 and 31?Wh/m2 respectively. Dependence of the global and ultraviolet solar radiation on the atmospheric humidity was investigated. Linear regression functions were obtained with coefficient of determination R2> 0.7. The decrease in ultraviolet solar radiation from 270 to 240?Wh/m2 justifiably as a result of increasing the chemical pollutants SO2 and NO2.  相似文献   

17.
In the present study, the global, direct and diffuse components of solar radiation as well as temperature, relative humidity and wind speed have been continuously monitored and analysed on an hourly, daily and monthly basis. The monthly average daily total solar radiation varies from 2700 W h/m2 in December to 8000 W h/m2 in June with an average clearness index of 0.65. Experimental data are compared to the predictions of different theoretical models as functions of declination and hour angles. Correlations are obtained describing the variation of hourly, daily and monthly averages of total and diffuse solar radiation using polynomial expressions. Empirical correlations describing the dependence of the daily average diffuse to total radiation ratio on the clearness index are also obtained. Data for the daily diffuse to total radiation ratio are compared to correlations obtained by other investigators. The comparison shows a reasonable agreement with some scatter due to the seasonal dependence of the correlation. Comparison of calculations with experimental measurements under clear sky conditions show excellent agreement with a maximum error of 8%.  相似文献   

18.
The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21° 42′37″N, longitude 39° 11′12″E), Saudi Arabia for the period 1996–2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996–2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H0) and various meteorological parameters. The nonlinear Angström type model developed by Sen and the trigonometric function model proposed by Bulut and Büyükalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Büyükalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.  相似文献   

19.
This work focuses on the variability of the global solar radiation over the area of Maceió (9°40′S, 35°42′W, 127 m), located in Northeastern State of Alagoas, Brazil, during the1997–1999 period. Solar radiation variability was evaluated on 5 min, hourly, daily, monthly and seasonal scales. The results showed that the maximum values of the hourly global solar irradiation, , in the dry (September–February) and rainy (March–August) seasons were 3.18 and 2.50 MJ m−2, respectively. The peaks of the hourly average, , for both periods were 2.79 MJ m−2 and the daily average of the global solar irradiation, , was 19.89 MJ m−2. The daily clearness index, , was found to be 0.53 (rainy period) and 0.59 (dry period). In clear, partially cloudy (the most frequent) and overcast days, the daily averages of global solar irradiation were 25.20, 19.00 and 8.00 MJ m−2, respectively. On an annual scale the global solar irradiation changed from 15.00 MJ m−2 by August to 24.04 MJ m−2 by November.  相似文献   

20.
Depleting oil and gas reserves, combined with the growing concerns of global warming, have made it inevitable to seek alternative/renewable energy sources. The integration of renewables such as solar and wind energy is becoming increasingly attractive and is being used widely, for substitution of oil-produced energy, and eventually to minimize atmospheric degradation. The literature shows that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the feasibility of using hybrid (wind+solar+diesel) energy conversion systems at Dhahran to meet the energy needs of twenty 2-bedroom houses. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The performance of hybrid systems consisting of different rated power wind farms, photovoltaic (PV) areas, and storage capacities together with a diesel back-up are presented. The monthly average daily energy generated from the above hybrid system configuration has been presented. The deficit energy generated from the back-up diesel generator and the number of operational hours of the diesel system to meet a specific annual electrical energy demand of 702,358 kWh have also been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号