首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Long-term studies of greenhouse gas fluxes from agricultural soils in different climate regions are needed to improve the existing calculation models used in greenhouse gas inventories. The aim of this study was to obtain more information on nitrous oxide (N2O) emissions from agricultural mineral soils in the boreal region. N2O emissions were studied during 2000–2002 on two soil types in Finland, a loamy sand and a clay with plots of grass, barley and fallow. N2O fluxes were measured with static chambers throughout the year. Other parameters measured were water filled pore space (WFPS), soil mineral nitrogen concentration, soil porosity, soil temperature and depth of soil frost. The annual fluxes from the clay soil ranged from 3.7 to 7.8 kg N ha–1 and those from sandy loam from 1.5 to 7.5 kg N ha–1. On average 60% of the annual fluxes occurred outside the growing season, from October to April. Increasing the number of freeze-thaw events was found to increase the fluxes during winter and during the thawing period in spring. The results suggest that N2O fluxes from these boreal mineral soils do not vary much as a function of applied fertiliser N and could probably be better estimated from soil physical properties, including soil porosity.  相似文献   

2.
Carbon (C) sequestration and soil emissions of nitrous oxide (N2O) affect the carbon dioxide (CO2) advantage of energy crops. A long-term study has been performed to evaluate the environmental effects of energy crop cultivation on the loamy sand soil of the drier northeast region of Germany. The experimental field, established in 1994, consisted of columns (0.25 ha each) cultivated with short rotation coppice (SRC: Salix and Populus) and columns cultivated with annual crops. The columns were subdivided into four blocks, with each receiving different fertilization treatments. The soil C content was measured annually from 1994 until 1997, and then in 2006. Soil N2O levels were measured several times per week from 1999 to 2007. Water-filled pore space (WFPS) and soil nitrate measurements have been performed weekly since 2003. Increased C stocks were found in SRC columns, and C loss was observed in blocks with annual crops. The soil from fertilized blocks had higher levels of C than the soil from non-fertilized blocks. SRC cropping systems on dry, loamy sand soils are advantageous relative to annual cropping systems because of higher C sequestration, lower fertilized-induced N2O emissions, and reduced background N2O emissions in these soils. SRC cropping systems on dry, loamy sand soils have a CO2 advantage (approximately 4 Mg CO2 ha−1 year−1) relative to annual cropping systems.  相似文献   

3.
A laboratory experiment was conducted to determine whether applying controlled release nitrogen fertilisers could reduce nitrous oxide emissions from an andosol maintained at different water contents, compared with applying standard nitrogen fertiliser. The effect of the form of N applied (NH4-N or NO3-N) was also investigated. Soil was collected from an arable field and sub-samples were treated with controlled release or standard fertiliser, applied at a rate of 200 g N g–1 dry soil either as NH4 + or NO3 . The soils were maintained at 40%, 55%, 70% or 85% water filled pore space (WFPS) and incubated at 25 °C for 50 days. Gas samples were collected and analysed every 3–4 days and soil samples were analysed on five occasions during the incubation. Emissions of N2O were much greater from ammonium sulphate than from calcium nitrate fertiliser, indicating that nitrification was the main source of the N2O. Emissions at 85% WFPS were greater than at the lower water contents in all treatments. The use of controlled release NH4-N fertilisers reduced and delayed the maximum peak of emissions, but at 55% and 70% WFPS this did not always result in lower total emissions. Emissions from the controlled release NO3-N fertiliser were very low, but only significantly lower than from standard NO3-N fertiliser at water contents below 85% WFPS. The results demonstrate that choosing the appropriate form of fertiliser in relation to expected soil moisture could significantly reduce N2O emissions. Applying the fertiliser in a controlled-release form could further reduce emissions by reducing the length of time that fertiliser nitrogen is present in the soil and available for nitrification or denitrification.  相似文献   

4.
Emissions of nitrous oxide (N2O) and nitric oxide (NO) have been identified as one of the most important sources of atmospheric pollution from grasslands. Soils are major sources for the production of N2O and NO, which are by-products or intermediate products of microbial nitrification and denitrification processes. Some studies have tried to evaluate the importance of denitrification or nitrification in the formation of N2O or NO but there are few that have considered emissions of both gases as affected by a wide range of different factors. In this study, the importance of a number of factors (soil moisture, fertiliser type and temperature) was determined for N2O and NO emissions. Nitrous oxide and NO evolution in time and the possibility of using the ratio NO:N2O as an indicator for the processes involved were also explored. Dinitrogen (N2) and ammonia (NH3) emissions were estimated and a mass balance for N fluxes was performed. Nitrous oxide and NO were produced by nitrification and denitrification in soils fertilised with and by denitrification in soils fertilised with . Water content in the soil was the most important factor affecting N2O and NO emissions. Our N2O and NO data were fitted to quadratic (r=0.8) and negative exponential (r=0.7) equations, respectively. A long lag phase was observed for the N2O emitted from soils fertilised with (denitrification), which was not observed for the soils fertilised with (nitrification) and was possibly due to a greater inhibiting effect of low temperatures on microbial activity controlling denitrification rather than on nitrification. The use of the NO:N2O ratio as a possible indicator of denitrification or nitrification in the formation of N2O and NO was discounted for soils fertilised with . The N mass balance indicated that about 50 kg N ha−1 was immobilised by microorganisms and/or taken up by plant roots, and that most of the losses ocurred in wet soils (WFPS >60%) as N2 and NH3 losses (>55%).  相似文献   

5.
The relative contribution of nitrification and denitrification to N2O production was investigated by means of soil incubations with acetylene in a mixed clover/ryegrass sown sward 5 days after application of a mineral fertiliser (calcium ammonium nitrate) or an organic one (cattle slurry) with and without the addition of the nitrification inhibitor dicyandiamide (DCD) and the commercial slurry additive Actilith-F2. At this time, maximum field N2O emissions were taking place. N2O production by the slurry amended soil was twice as high as that of the mineral amended one. N2O came in a greater proportion from nitrification rather than from denitrification in the slurry treatment, while for the mineral fertilisation most N2O came from denitrification. The addition of DCD to slurry produced a decrease in N2O production both from nitrification and denitrification. No reduction in N2O losses was observed from addition of DCD to the mineral fertilisation, although DCD resulted effective in reducing the nitrification rate by 53% both in the slurry and the mineral fertilisation. Actilith F2 induced a high nitrification rate and N2O production from denitrification was reduced while that from nitrification was not. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Interdependence of ammonia volatilization and nitrification in arid soils   总被引:4,自引:0,他引:4  
The effect of applied-N (urea) on interdependence of ammonia volatilization and nitrification was studied in twelve arid soils varying mainly in soil texture and CaCO3. Ammonia volatilization from applied urea was observed only above a threshold N concentration in soil (Vi). Values of Vi ranged from 50 in sandy soils to 250 g N g-1 in loamy and clay loam soils. Soils with higher CaCO3 showed lower values of Vi. Concentration of applied-N in soils, in relation to Vi determined its transformation pathway(s). Below Vi, all of the applied-N was nitrified in all soils with a delayed nitrification period ranging from 0 to 5 days. Above Vi, ammonia volatilization was first to start. This reduced NH4 + concentration in soil and nitrification started later after the delay period was over. Duration of delay period increased with applied-N, sand content and CaCo3. Often 80% or more of the total ammonia, volatilized during the delay period. NH4 + concentration in soil at which volatilization ended was generally higher than Vi. It was concluded that both ammonia volatilization and nitrification were interdependent only if concentration of applied N was more than Vi. Above Vi only one process predominated at a time as volatilization stopped soon after the start of nitrification even if NH4 concentration in soil was sufficient to sustain both processes.  相似文献   

7.
To better understand the effects of increased N input and dry periods on soil nitrous oxide (N2O) emission, we examined a unique data-set of weather, soil microclimate, N input, and N2O emissions (using the eddy covariance method), measured at a fertilized grassland over the period 2003–2008. We found that the N2O emission (11.5 kg N ha−1 year−1), the ratio of N2O emission to N input (3.4), and the duration of elevated N2O flux (57 days) in 2003 were about two times greater than those of the following years. 2003 had the highest annual N input (343 kg N ha−1 year−1) which exceeded the agronomical requirements for Irish grasslands (up to 306 kg ha−1 year−1). In the summer of 2003, the site had a significantly higher soil temperature, lower WFPS and lowest rainfall of all years. Large N2O emission events followed rainfall after a long dry period in the summer of 2003, attributed to dominant nitrification processes. Furthermore, in the non summer periods, when temperature was lower and WFPS was higher and when there were prior N applications, lower N2O emissions occurred and were attributed to dominant denitrification processes. Throughout the study period, the N input and soil dryness related factors (duration of WFPS under 50%, summer average WFPS, and low rainfall) showed exponential relationships with N2O emission and the ratio of N2O emission to N input. Based on these findings, we infer that the observed anomalously high N2O emission in 2003 may have been caused by the combined effects of excess N input above the plant uptake rate, elevated soil temperature, and N2O flux bursts that followed the rewetting of dry soil after an unusually long dry summer period. These results suggest that high N input above plant uptake rate and extended dry periods may cause abnormal increases in N2O emissions.  相似文献   

8.
Almonds are an important commodity in California and account for around 15% of the state’s fertilizer nitrogen (N) consumption. Motivated by strong correlations typically observed between fertilizer N inputs and emissions of the potent greenhouse gas and ozone depleting molecule nitrous oxide (N2O), this study aimed to characterize spatial and temporal patterns in N2O emissions in an almond orchard under typical agronomic management. N2O fluxes were measured for a total of 2.5 years, including 3 growing seasons and 2 dormant seasons. Measurements targeted two functional locations, defined as tree rows and tractor rows. In conjunction with the flux measurements, we determined driving variables including soil ammonium (NH4 +) and nitrate (NO3 ?), dissolved organic carbon (DOC), soil water-filled pore space (WFPS), soil pH, air temperature and precipitation. Cumulative annual N2O emissions were low (0.65 ± 0.07 and 0.53 ± 0.19 kg N2O–N ha?1 year?1 in year 1 and 2, respectively), likely due to the coarse soil texture and microject sprinkler irrigation and fertigation system. Emission factors (EF), conservatively calculated as the ratio of N2O emitted to fertilizer N applied, were 0.25 ± 0.03% and 0.19 ± 0.07% for year 1 and 2, respectively, which is below the IPCC EF range of 0.3–3%. Correlation analyses between N2O and driving variables suggested that overall N2O production was limited by microbial activity and nitrification was likely the major source process, but specific drivers of N2O emissions varied between seasons and functional locations.  相似文献   

9.
Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission data from agroforestry systems are not available in the southeastern USA, thus limiting our ability to optimize agroforestry management strategies for the region. We hypothesized that tree-crop interactions could prevent excess N from being released to the atmosphere as nitrous oxide (N2O). We determined N2O and carbon dioxide (CO2) emissions, soil temperature, water content, and surface-soil inorganic N in an 8-year-old agroforestry site at the Center for Environmental Farming Systems in Goldsboro, North Carolina, USA. The experimental design was a factorial arrangement of soil texture (loamy sand, sandy loam, and clay loam) and canopy cover (cropped alley, margin between crops and trees, and under Pinus palustris, Pinus taeda, and Quercus pagoda) with three replications. Sampling occurred 42 times within a year using static, vented chambers exposed to the soil for 1-h periods. Soil N2O emission was lower under tree canopies than in cropped alleys, and margin areas were intermediate. Soil texture, water content, and inorganic N were key determinants of the magnitude of N2O emission. Soil CO2 emission was controlled by temperature and water content as expected, but surprisingly not by their interaction. Soil temperature was 1.8 ± 1.3 °C lower and soil water content was 0.043 ± 0.15 m3 m?3 lower under tree canopy than in cropped alleys, which helped to reduce CO2 emission under trees relative to that in cropped alleys. Our results provide a foundation for reducing greenhouse gas emissions in complex agricultural landscapes with varying soil texture by introducing timber production without abandoning agricultural operations.  相似文献   

10.
Five field experiments and one greenhouse experiment were carried out to assess the effects of nitrogen (N) fertilizer type and the amount of applied N fertilizer on nitrous oxide (N2O) emission from grassland. During cold and dry conditions in early spring, emission of N2O from both ammonium (NH 4 + ) and nitrate (NO 3 ) containing fertilizers applied to a clay soil were relatively small, i.e. less than 0.1% of the N applied. Emission of N2O and total denitrification losses from NO 3 containing fertilizers were large after application to a poorly drained sand soil during a wet spring. A total of 5–12% and 8–14% of the applied N was lost as N2O and via denitrification, respectively. Emissions of N2O and total denitrification losses from NH 4 + fertilizers and cattle slurry were less than 2% of the N applied. Addition of the nitrification inhibitor dicyandiamide (DCD) reduced N2O fluxes from ammonium sulphate (AS). However, the effect of DCD to reduce total N2O emission from AS was much smaller than the effect of using NH 4 + fertilizer instead of NO 3 fertilizer, during wet conditions. The greenhouse study showed that a high groundwater level favors production of N2O from NO 3 fertilizers but not from NH 4 + fertilizers. Inereasing calcium ammonium nitrate (CAN) application increased the emitted N2O on grassland from 0.6% of the fertilizer application rate for a dressing of 50 kg N ha–1 to 3.1% for a dressing of 300 kg N ha–1. In another experiment, N2O emission increased proportionally with increasing N rate. The results indicate that there is scope for reducing N2O emission from grasslands by choosing the N fertilizer type depending on the soil moisture status. Avoiding excessive N application rates may also minimize N2O emission from intensively managed grasslands.  相似文献   

11.
Nitrous oxide is produced in soils and sediments essentially through the processes of nitrification and denitrification, although several rival processes could be competing. This study was undertaken in order to better understand the controlling factors of nitrification, denitrification and associated N2O production as well as the contribution of these two processes to the average N2O production by soils and sediments. With this aim, soil and sediment samples were taken in contrasting periods and different land use types, each time at different depths (upper and lower soil horizons). They were incubated in separate batches in specific conditions to promote denitrification and nitrification: (1) a complete anaerobic environment adding KNO3 for the denitrification assay and (2) an aerobic environment (21 % O2) with addition of NH4Cl for the nitrification assay. Potentials of nitrification and denitrification were determined by the rates of nitrate either reduced (for denitrification) or produced (for nitrification). Overall, denitrification potential varied from 70 to 2,540 ng NO 3 -N g?1 dry soil h?1 and nitrification potential from 30 to 1,150 ng NO3 ?-N g?1 dry soil h?1. Nitrous oxide production by denitrification was significantly (P < 0.05) greater in topsoils (10–30 cm) than in subsoils (90–110 cm), ranging, respectively, from 26 to 250 ng N2O-N g?1 dry soil h?1 versus 1.5 to 31 ng N2O-N g?1 dry soil h?1, i.e., a mean 19.5 versus. 6.0 % of the NO3 ? denitrified for the upper and lower horizons, respectively. Considering the N2O production in relation with the nitrate production (e.g., nitrification), no significant difference (P < 0.05) was found in the soil profile, which ranged from 0.03 to 6 ng N2O-N g?1 dry soil h?1. This production accounts for 0.21 and 0.16 % of the mean of the NO3 ? produced for the top and subsoils, respectively. On the basis of the average production by both top- and subsoils, N2O production by denitrification is clearly greater than by nitrification under the measurement conditions used in this study, from 30- to 100-fold higher. Such a high potential of N2O emission must be taken into account when reducing nitrate contamination by increasing denitrification is planned as a curative measure, e.g. in rehabilitation/construction of wetlands.  相似文献   

12.
Tropical soils are important sources of nitrous oxide (N2O) and nitric oxide (NO) emissions from the Earths terrestrial ecosystems. Clearing of tropical rainforest for pasture has the potential to alter N2O and NO emissions from soils by altering moisture, nitrogen supply or other factors that control N oxide production. In this review we report annual rates of N2O and NO emissions from forest and pastures of different ages in the western Brazilian Amazon state of Rondônia and examine how forest clearing alters the major controls of N oxide production. Forests had annual N2O emissions of 1.7 to 4.3 kg N ha-1 y-1 and annual NO emissions of 1.4 kg N ha-1 y-1. Young pastures of 1–3 years old had higher N2O emissions than the original forest (3.1–5.1 kg N ha-1 y-1) but older pastures of 6 years or more had lower emissions (0.1 to 0.4 kg N ha-1 y-1). Both soil moisture and indices of soil N cycling were relatively poor predictors of N2O, NO and combined N2O + NO emissions. In forest, high N2O emissions occurred at soil moistures above 30 water-filled pore space, while NO emissions occurred at all measured soil moistures (18–43). In pastures, low N availability led to low N2O and NO emissions across the entire range of soil moistures. Based on these patterns and results of field fertilization experiments, we concluded that: (1) nitrification was the source of NO from forest soils, (2) denitrification was not a major source of N2O production from forest soils or was not limited by NO- supply, (3) denitrification was a major source of N2O production from pasture soils but only when NO3- was available, and (4) nitrification was not a major source of 3 NO production in pasture soils. Pulse wettings after prolonged dry periods increased N2O and NO3- emissions for only short periods and not enough to appreciably affect annual emission rates. We project that Basin-wide, the effect of clearing for pasture in the future will be a small reduction in total N2O emissions if the extensive pastures of the Amazon continue to be managed in a way similar to current practices. In the future, both N2Oand NO fluxes could increase if uses of pastures change to include greater use of N fertilizers or N-fixing crops. Predicting the consequences of these changes for N oxide production will require an understanding of how the processes of nitrification and denitrification interact with soil type and regional moisture regimes to control N2O and NO production from these new anthropogenic N sources.  相似文献   

13.
The application of animal manure slurries to soils may cause high short-term emissions of nitrous oxide (N2O). We performed studies on N2O emissions varying the contents of NH4-N and microbial available organic carbon (measured as biological oxygen demand, BOD) of cattle slurry. Additionally the effect of slurry BOD on N2O emissions at different soil water contents (35, 54, 71% water filled pore space, WFPS) was studied. Slurries from an anaerobic digestion plant (digested slurry, BOD: 1.2 g O2 l−1) or untreated slurry (BOD: 6.8 g O2 l−1) were applied at 30 m3 ha−1 and incubated at 20°C. The higher the WFPS the more N2O was emitted independent from the type of slurry applied. At low and medium soil water contents, the digested slurry induced significantly lower N2O emissions than the untreated slurry. The N2O emissions were directly correlated with the BOD content of the slurry (R 2=0.61, P≤0.001). We also compared the effect of NH4-N concentration and BOD on emissions from the slurries at 54% WFPS. Again the BOD had a significant influence on N2O emissions but a reduction of NH4-N had no effect on the amount of N2O emitted. The microbially available organic carbon seems to determine the amount of N2O emitted shortly after slurry application. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Modelling nitrous oxide emissions from dairy-grazed pastures   总被引:2,自引:0,他引:2  
Soil N2O emissions were measured during four seasons from two highly productive grass-clover dairy pastures to assess the influences of soil moisture, temperature, availability of N (NH 4 + and NO 3 ) and soluble C on N2O emissions, and to use the emission data to validate and refine a simulation model (DNDC). The soils at these pasture sites (Karapoti fine sandy loam, and Tokomaru silt loam) differed in texture and drainage characteristics. Emission peaks for N2O coincided with rainfall events and high soil moisture content. Large inherent variations in N2O fluxes were observed throughout the year in both the ungrazed (control) and grazed pastures. Fluxes averaged 4.3 and 5.0 g N2O/ha/day for the two ungrazed sites. The N2O fluxes from the grazed sites were much higher than for the ungrazed sites, averaging 26.4 g N2O/ha/day for the fine sandy loam soil, and 32.0 g N2O/ha/day for the silt loam soil. Our results showed that excretal and fertiliser-N input, and water-filled pore space (WFPS) were the variables that most strongly regulated N2O fluxes. The DNDC model was modified to include the effects of day length on pasture growth, and of excretal-N inputs from grazing animals; the value of the WFPS threshold was also modified. The modified model NZ-DNDC simulated effectively most of the WFPS and N2O emission pulses and trends from both the ungrazed and grazed pastures. The modified model fairly reproduced the real variability in underlying processes regulating N2O emissions and could be suitable for simulating N2O emissions from a range of New Zealand grazed pastures. The NZ-DNDC estimates of total yearly emissions of N2O from the grazed and ungrazed sites of both farms were within the uncertainty range of the measured emissions. The measured emissions changed with changes in soil moisture resulting from rainfall and were about 20% higher in the poorly drained silt loam soil than in the well-drained sandy loam soil. The model accounts for these climatic variations in rainfall, and was also able to pick up differences in emissions resulting from differences in soil texture.  相似文献   

15.
Predicting the N2O flux from soils is difficult because of the complex interplay of the various processes involved. In this study a boundary line approach was used to apply results from mechanistic experiments to N2O flux data resulting from measurements on field scale in southern Germany. Boundary lines were fitted to the rim of the data points in scattergrams depicting readily obtainable soil variables against the measured N2O flux. The boundary line approach is based on the hypothesis that this line depicts the functional dependency between the two variables. For determining these boundary lines a novel method was applied. The function best representing the relationship between the N2O flux and soil temperature had a maximum above 23 °C and the one between the N2O flux and the water filled pore space (WFPS, to represent water content) had a maximum at 72% WFPS. In the range of 0–20 mg N kg-1 the relationship between N2O flux and nitrate in the soil was best described by a linear function, whereas in the range of 0–35 mg N kg-1 a Michaelis–Menten function was more appropriate. The boundary lines specified in this study are in agreement with existing theoretical concepts as well as experimental results obtained under controlled and field conditions as reported in the literature. Therefore, the boundary line approach can be used to improve empirical models for predicting the N2O flux in the field.  相似文献   

16.
Nitrous oxide (N2O) is a potent greenhouse gas released from high rainfall cropping soils, but the role of management in its abatement remains unclear in these environments. To quantify the relative influence of management, nitrogen (N) fertiliser and soil nitrification inhibitor was applied to separate but paired raised bed and conventionally flat field experiments in south west Victoria, to measure emissions and income from wheat and canola planted 2 and 3 years after conversion from a long-term pasture. Management included four different rates of N fertiliser, top-dressed with and without the nitrification inhibitor Dicyandiamide (DCD), which was applied in solution to the soil in the second year of experimentation. Crop biomass, grain yield, soil mineral N, soil temperature and soil water and N2O flux were measured. Static chamber methodology was used to identify relative differences in N2O loss between management. In the second crop (wheat) following conversion, N2O losses were up to 72 % lower (P < 0.05) in the furrows, receiving the lower rate of N fertiliser compared with the highest rate, with less frequent reductions observed in the third crop (canola); losses of N2O from the beds was unaffected by N rate, perhaps from nitrate leakage into the adjacent furrow of the raised bed experiment. On the nearby flat experiment, nitrate leaching may have diminished the effects of N rate and DCD on N2O flux. Furthermore the extra N did not significantly increase grain yield in either the wheat or canola crops on both experiments. The application of DCD in the canola crop temporarily reduced (P < 0.05) N2O production by up to 84 % from the beds, 83 % in the adjacent furrows and 75 % on the flat experiment. Grain yield was not significantly (P < 0.001) affected however, canola income was reduced by $1407/ha and $1252/ha, compared with no addition of inhibitor on the respective bed and flat experiments. Although N2O fluxes are driven by environmental episodic events, management will play a role in N2O abatement. However, DCD currently appears economically unfeasible and matching N fertiliser supply to meet crop demand appears a better option for minimising N2O losses from high rainfall cropping systems.  相似文献   

17.
Replacement of high-input N fertilized pastures with low-input grass-legume pastures may provide a mitigation option to reduce agricultural N2O emissions. This study examined the relationship between N-cycling rates and N2O production and evolution from the root zone of grass-clover pastures of various ages (production year 1, 2 and 8). The experimental approach included cross-labelling pasture monoliths with 15N-enriched substrates to identify sources of N2O, in combination with assessment of gross N mineralization and nitrification. Nitrous oxide emissions were generally low, fluctuating between 82 and 136μg N2O–N m−2 d−1, independent of pasture age. The 15N labelling indicated that at least 50% of the N2O was derived from the soil NH4+ pool, approaching 100% in June. In the two year old pasture the NH4+ pool contributions to N2O emissions varied significantly with sampling time. Emission rates of N2O correlated positively with soil NH4+ concentrations and the NH4+ supply as expressed by gross mineralization. The N2O emissions showed a significant inverse relationship with soil NO3, but was not correlated with the supply of NO3 as expressed by gross nitrification. The ratio N2O vs. nitrification averaged 0.05% (range 0.004 to 0.29%) and varied with sampling time showing the lowest value in wet soil conditions.  相似文献   

18.
Nitrous oxide can be produced during nitrification, denitrification, dissimilatory reduction of NO 3 - to NH 4 + and chemo-denitrification. Since soils are a mosaic of aerobic and anaerobic zones, it is likely that multiple processes are contributing simultaneously to N2O production in a soil profile. The N2O produced by all processes may mix to form one pool before being reduced to N2 by denitrification. Reliable methods are needed for measuring the fluxes of N2O and N2 simultaneously from agricultural soils. The C2H2 inhibition and 15N gas-flux methods are suitable for use in undisturbed soils in the field. The main disadvantage of C2H2 is that as well as blocking N2O reductase, it also blocks nitrification and dissimilatory reduction of NO 3 - to NH 4 + . Potentially the 15 N gas-flux method can give reliable measurements of the fluxes of N2O and N2 when all N transformation processes proceed naturally. The analysis of 15N in N2 and N2O is now fully automated by continuous-flow isotope-ratio mass spectrometry for 12-ml gas samples contained in septum-capped vials. Depending on the methodology, the limit of detection ranges from 4 to 11 g N ha-1day-1 for N2 and 4 to 15 g N ha-1day-1 for N2O. By measuring the 15N content and distribution of 15N atoms in the N2O molecules, information can also be obtained to help diagnose the sources of N2O and the processes producing it. Only a limited number of field studies have been done using the 15N gas-flux method on agricultural soils. The measured flux rates and mole fractions of N2O have been highly variable. In rain-fed agricultural soils, soil temperature and water-filled pore space change with the weather and so are difficult to modify. Soil organic C, NO 3 - and pH should be amenable to more control. The effect of organic C depends on the degree of anaerobiosis generated as a result of its metabolism. If conditions for denitrification are not limiting, split applications of organic C will produce more N2O than a single application because of the time lag in the synthesis of N2O reductase. Increasing the NO 3 - concentration above the K m value for NO 3 - reductase, or decreasing soil pH from 7 to 5, will have little effect on denitrification rate but will increase the mole fraction of N2O. The effect of NO 3 - concentration on the mole fraction of N2O is enhanced at low pH. Manipulating the interaction between NO 3 - supply and soil pH offers the best hope for minimising N2O and N2 fluxes.  相似文献   

19.
The effects of elevated atmospheric CO2 concentration on soil moisture, N2O fluxes, and biomass production of Phleum pratense were studied in the laboratory. Farmed peat and sandy soil mesocosms sown with P. pratense were fertilized with a commercial fertilizer. In peat soil 10 g N m−2 of commercial fertilizer were added and in sandy soil 15 g N m−2. In both experiments, soil moisture was regulated with deionized water; 18 mesocosms were tended to keep equally moist, and the other 18 were watered with equal amounts of water. Nine mesocosms from both watering treatments were grown under ambient (360 μmol mol−1) CO2 concentration and the remaining nine under doubled (720 μmol mol−1) CO2. N2O efflux was monitored using a closed chamber technique and a gas chromatograph. The elevated supply of CO2 increased production of above- and belowground biomass, soil moisture and N2O fluxes, but decreased the total N content in the aboveground biomass, especially for the sandy soil. In similar water levels, N2O efflux from the sandy soil was the same magnitude as that from the peat soil. In addition to moisture, N availability was the main limiting factor for N2O production, but C availability also seemed to regulate the denitrification activity. In addition to an increase in C availability the increase in the N2O efflux under the raised CO2 concentration also required a simultaneous increase in soil moisture.  相似文献   

20.
An organic agricultural soil was exposed to freeze–thaw cycles (FTC) using either intact soil cores or cores packed with homogenized soil. The cores were first exposed to two mild FTCs (–1.5°C/+4°C) with soil water content being 56–85% of the water-filled pore space (WFPS). Both intact and packed soil cores showed high N2O emissions when the soil was thawing and had high WFPS. The second freeze–thaw cycle induced lower N2O emission than the first. After the mild FTCs, a deep frost (–15°C) was applied. This greatly increased the N2O emissions when the soil was thawing. Freezing–thawing had a smaller effect on CO2 than on N2O release. The results show that both soil moisture and the severity of frost modify the N2O burst after thawing, and N2O release (denitrification) was favoured more by FTC than heterotrophic microbial activity (CO2 production) in general. The possible reason for this difference is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号