首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
针对工作面沿正断层走向布置,建立上下盘工作面开采三维数值计算模型,模拟研究上、下盘工作面采动应力及弹性能的分布特征、断层煤柱宽度及倾角对应力场和能量场的影响规律。研究表明:正断层上盘或下盘工作面开采,断层侧工作面端头及断层煤柱上的采动应力和弹性能较高,且上盘工作面开采时更高,断层阻隔效应较为明显。随着断层煤柱宽度减小,断层对工作面采动应力及弹性能积聚的影响程度逐渐增加,断层侧工作面端头采动应力及弹性能峰值明显升高;当断层煤柱宽度由50 m减小到20 m,断层煤柱应力及弹性能不断升高,煤柱宽度减小为10m时,小煤柱承载能力及弹性能降低。随着断层倾角增大,断层侧工作面及断层煤柱采动应力及能量峰值升高,高角度断层的影响较大。断层侧巷道两帮处于采动高应力状态,积聚着较高的弹性能,回采过程中应加强巷道支护,采取必要的灾害防治措施。  相似文献   

2.
在断层和采动影响下,下盘工作面断层侧煤柱宽度制约着工作面的安全生产。以黄陵煤矿二盘区 203下盘工作面为工程背景﹐采用理论分析、数值模拟和相似模拟相结合的方法﹐研究上盘工作面采空后﹐下盘工作面断层侧煤柱上方载荷与煤柱尺寸之间的关系﹐揭示煤柱宽度为30,26,22,20,13和6 m时的位移、应力演化及塑性区分布特征,分析煤柱宽度为30 m时的覆岩结构特征,并通过综合分析,优化了工作面合理煤柱宽度。研究表明:上盘工作面采空时,在断层和采动的影响下,随着煤柱宽度的减小,下盘工作面断层侧煤柱上方的载荷分为载荷降低区、载荷过渡区和载荷稳定区;当煤柱宽度为30 m 时,下盘工作面断层侧高位岩层出现离层,煤柱上方应力集中程度大于另一侧,承载能力强,稳定性高;当煤柱宽度减小至22 m 时,靠近断层侧的顶板最大下沉量和应力集中程度显著增大,煤柱开始发生塑性破坏,承载能力逐渐减弱﹔当煤柱宽度减小到l3 m时,断层侧塑性区向工作面两端及上方发展至贯通煤柱,煤柱稳定性较差﹔当煤柱宽度减小至6 m 时,靠近断层侧顶板最大下沉量和应力集中程度继续增大,塑性区继续发育。通过相似模拟试验研究发现,当煤柱宽度为30 m 时,顶板垮落并充填采空区,下盘工作面断层侧煤柱上方无明显变化。经综合分析,确定下盘工作面断层侧煤柱的合理宽度为 18~22 m,可提高工作面回采率,同时可保证工作面安全生产。  相似文献   

3.
为研究确定梁宝寺矿井3505工作面的斜长及其断层保护煤柱的最佳尺寸,利用FLAC3D数值模拟软件建立计算模型,研究分析了在不同断层保护煤柱宽度和不同工作面斜长相互组合条件下采空区两侧煤体的垂直应力分布变化规律。结果显示,当断层保护煤柱的宽度为45 m时,煤柱上的垂直应力峰值最小,随着工作面斜长的逐渐增加,在斜长从60 m变为80 m这个区间,煤柱上的垂直应力缓慢增加,在斜长为80 m之后的区间,煤柱上的垂直应力迅速增加。根据模拟结果,研究分析及从安全经济的角度考虑得出最终的断层保护煤柱宽度为45 m,工作面斜长为80 m较为合适。  相似文献   

4.
针对孤岛工作面开采时两侧煤柱应力集中问题,以山东能源协庄煤矿401工作面为研究对象,通过数值模拟和现场实测研究了孤岛工作面回采时煤柱采动应力和塑性区分布特征。模拟结果表明:当煤柱宽度由10 m增加至40 m时,相邻工作面两侧高应力区范围以及对大巷应力分布的影响逐渐减小,最大水平应力分别降低了13%、10.5%和6.2%;煤柱宽度为10 m和20 m时,煤柱出现塑性破坏失去承载能力;煤柱宽度为30 m和40 m时,煤柱两侧出现塑性破坏,中心未出现塑性破坏,仍具有承载能力;基于模拟结果,确定合理煤柱宽度为30 m,现场监测结果表明,该煤柱宽度可以实现孤岛工作面的安全回采。  相似文献   

5.
李小裕  丁楠 《煤》2018,(10)
基于正断层采用FLAC~(3D)研究了上下盘向断层不同推进方式开采下断层影响区工作面围岩应力演化规律,结果表明:上盘开采时工作面前方煤体垂直支撑应力峰值大于下盘工作面,不论是上盘向断层推进开采还是下盘向断层推进开采,随着工作面逐渐接近断层,断层前方煤体的垂直支撑应力先增大后减小,主要是因为煤柱较宽时能够承载工作面前方的垂直支撑应力叠加,但是当煤柱宽度减小到一定程度时,煤柱发生整体塑性破坏使得承载能力降低,同时随着工作面逐渐向断层推进,工作面端头两侧煤体的垂直支撑应力逐渐增大,成为主要承载区。  相似文献   

6.
上覆近距离煤柱会造成下层煤的应力集中及冲击危险。采用三维数值模拟,分析了不同宽度煤柱下底板应力分布与底板岩层破坏特征。研究表明:当煤柱宽度≤50 m时,煤柱底板应力呈"倒钟"形分布形态;当煤柱宽度50 m时,煤柱底板应力呈"倒铁塔"式分布形态。煤柱中心最大应力集中系数与煤柱宽度呈幂函数关系,且随着煤柱宽度的增加,煤柱集中应力在底板中的衰减速度逐渐降低。上覆煤柱中心下方3煤层面的最大应力集中系数与煤柱宽度呈负指数关系。煤柱底板破坏范围与煤柱宽度呈负相关关系,煤柱底板岩层的破坏以剪切破坏为主。根据上覆煤柱影响划分了六采区3煤工作面冲击危险区,并提出了相应的防治技术。  相似文献   

7.
为探明正断层附近开采的致灾规律,为断层煤柱尺寸的选择提供理论依据,采用FLAC3D软件建立数值计算模型,研究下盘向正断层开采时不同尺寸断层煤柱的支承应力和覆岩变形规律。研究表明:因断层松软破碎,阻隔了采动应力传递,断层保护煤柱尺寸越小,煤柱内支承应力峰值越大,当断层煤柱减小至15 m时,应力峰值突增,致使煤柱发生塑性破坏,释放弹性能,易诱发煤柱冲击地压;当断层煤柱大于40 m时,顶板沉降受断层影响较小,沉降曲线呈现对称"U"盆地状,当煤柱尺寸进一步减小时,顶板沉降呈现非对称性"√"盆地状,最大下沉点位于断层侧,需加强工作面超前支护,防止压架、围岩大变形等情况的发生。结果为工作面安全开采提供了参考依据。  相似文献   

8.
为了确定寺家庄煤矿15106孤岛工作面窄煤柱沿空掘巷的合理煤柱宽度,文章通过数值模拟与现场实测的方法,分析了不同窄煤柱留设宽度条件下窄煤柱的垂直应力特征及沿空巷道的围岩变形特征,最终确定了15106孤岛工作面区段煤柱的合理宽度,主要得到如下结论:随着窄煤柱宽度的增加,煤柱内部受到的垂直应力先增大后减小。当煤柱宽度为7m时,煤柱内部峰值垂直应力为50.23MPa,应力集中系数为3.52。窄煤柱宽度由7m增加至8m后,回采巷道顶板下沉量的变化差异不大,且煤柱帮移近量的变化幅度逐渐减小。最终确定15106孤岛工作面窄煤柱沿空掘巷的合理煤柱宽度为7m。经现场工程应用,巷道围岩变形较小,7m窄煤柱沿空掘巷工程取得成功。  相似文献   

9.
以赵楼煤矿深井综放沿空掘巷为工程背景,采用大型地质力学模型试验系统研究深井综放沿空掘巷在上工作面回采、巷道掘进及本工作面回采期间围岩应力演化规律,分析不同煤柱宽度下围岩应力分布特征,并提出相应的工程建议措施。结果表明:掘巷期间不同煤柱宽度条件下煤柱帮围岩应力峰值及分布状态不同,3~6 m煤柱时,竖向应力近似呈三角形分布,8 m煤柱时呈梯形分布,且随煤柱宽度增加,煤柱最大竖向应力增大;不同煤柱宽度下的实体煤帮应力峰值均大于煤柱帮,且随煤柱宽度增加,实体煤帮更加靠近支承压力峰值位置,不利于巷道支护。工作面回采期间,煤柱宽度小于3 m时,随着超载等级的增加,煤柱应力峰值先增大后减小,煤柱宽度大于5 m时,煤柱的应力峰值一直增加但增幅降低,煤柱帮浅部应力逐渐减小;实体煤帮的应力峰值不断增大,且应力峰值位置逐渐向煤体深部转移。工程实践表明,掘采期间的巷道变形均得到有效控制,研究结果可为确定合理的煤柱留设宽度及巷道支护参数和强度提供借鉴和参考。  相似文献   

10.
以同忻矿5305巷为研究对象,通过理论分析、数值模拟分析了特厚煤层综放面沿空掘巷小煤柱的合理留设宽度。研究结果表明:同忻矿8307采空区稳定后侧向支承应力降低区为0~12 m;随着煤柱宽度的增加,煤柱内部应力集中程度也在逐渐增加,当煤柱宽度小于7 m时,煤柱内部应力低于原岩应力,巷道处于应力降低区内;随着煤柱宽度的增加,煤柱内部弹性区宽度也在逐渐增加,当煤柱宽度小于等于6 m时,煤柱内部全部塑性破坏,当煤柱宽度大于等于7 m时,煤柱内部开始出现弹性区。通过理论分析及现场实测,最终确定留设6 m小煤柱可完全保证同忻矿安全生产。  相似文献   

11.
当工作面上覆岩层中含有断层时,地表下沉规律与不含断层时具有显著差别。为了研究开采沉陷中断层活化机理,通过理论推导将开采沉陷中断层活化分为"断层面产生离层空间"、"煤柱压缩"两种断层活化模式并分别利用数值模拟和现场实例进行了验证。研究结果表明:①采动将造成断层面产生离层空间,离层空间以下沉系数等于1传递给松散层造成断层露头处地表产生台阶下沉,影响断层离层空间的主要因素有工作面推进长度、基岩厚度、保护煤柱宽度、煤层厚度、断层倾角、断层是否含水、断层带岩体内摩擦角及黏聚力等;②断层面离层空间随着工作面推进长度的增加而增加,当工作面推进一定长度时不再变化;断层面离层空间随着基岩厚度的增加而线性增加;断层面离层空间随着保护煤柱宽度增加而减小;断层面离层空间随煤层厚度增加而线性增加;断层面离层空间随断层倾角增大而增加;断层带岩体原生水的存在对断层面离层空间产生具有促进作用;断层面离层空间随断层带岩体黏聚力和内摩擦角的增加而减小;③工作面主要影响角和断层倾角的大小关系控制"断层面产生离层空间"模式断层活化,当断层倾角大于主要影响角并与主要影响角在基岩内相交时,断层将活化;④当断层倾角小于主要影响角时,工作面超前支承压力影响范围控制"煤柱压缩"模式断层活化,当工作面超前支承压力接触断层时,断层将活化。  相似文献   

12.
为研究上覆不均布采空区下,具有冲击危险工作面区段煤柱布置问题,以某矿I010203工作面为工程背景,通过现场监测、数值模拟、理论分析等方法对工作面区段煤柱冲击危险和合理宽度进行研究。数值模拟和现场监测结果表明,I010203工作面回采过程中,15m宽区段煤柱微震事件频繁、能量剧烈释放,增大了工作面冲击危险;并且15m宽煤柱在工作面回采后不能完全破坏,仍可承受较高应力并向下部煤层传递,增大了下伏煤层回采工作面的冲击危险。数值研究表明,当宽度为0~6m时,煤柱破碎程度较高,不利于隔绝采空区及巷道稳定;当宽度大于10m时,煤柱内出现弹性核区,应力增加迅速,冲击危险性增高;8m宽煤柱是既能隔绝采空区预防瓦斯,又能使应力最低降低冲击危险的临界煤柱宽度,更合理的区段煤柱宽度为8m左右。研究结果可为该矿井接续工作面和相似条件工作面回采的煤柱宽度留设提供理论依据。  相似文献   

13.
为研究强冲击倾向性特厚煤层综放工作面区段煤柱合理宽度,对华亭煤矿250102工作面频发的冲击地压现象进行分析,发现250102工作面20m区段煤柱内存在着极易诱发冲击地压的应力条件,具有典型的煤柱型冲击地压特征。采用数值模拟和理论计算的方法对2501采区工作面区段煤柱合理宽度进行模拟计算。研究表明:当煤柱宽度为5m时,应力集中系数最低,为1.14,冲击危险程度较低|当煤柱宽度为20m时,应力集中系数达到最高,为3.40,冲击危险程度达到最大|当煤柱宽度为25m以上时,应力曲线由单峰转化为双峰,煤柱由小煤柱的屈服阶段进入到大煤柱的承载阶段,冲击危险程度在不断降低|理论计算得出适合2501采区工作面区段煤柱宽度为5.64m,与数值模拟结果较为吻合。2501采区后续工作面均采用6m宽的区段煤柱,经实践验证,该宽度的区段煤柱对华亭煤矿冲击地压的防治效果较好。  相似文献   

14.
通过研究不同宽度区段煤柱的支承压力和弹性应变能密度的分布规律,发现当煤柱宽度10 m时,随着宽度的增加,侧向支承压力峰值逐渐增大;当宽度10 m时,煤柱中侧向支承压力峰值开始逐渐降低,并且煤柱中的应力峰值由小变大,然后再变小,其支承压力分布曲线由"拱形"向"马鞍形"过渡。当煤柱宽度为5 m时,煤柱中剩余弹性应变能最小,发生冲击危险的可能性最小。  相似文献   

15.
当煤层顶板中存在1层或者数层坚硬岩层时,随着工作面采高的增加,侧向岩层应力集中范围增大,导致护巷煤柱宽度增大。为了减小护巷煤柱宽度,提出顶板切缝减小护巷煤柱宽度的技术原理。采用相似模拟和数值模拟实验,对巷旁顶板不同切缝深度的岩层应力传递控制作用进行了系统的研究,揭示了切缝深度对岩层破裂和顶板下沉的影响。结果表明:随着切缝深度的增加,煤柱上方岩层应力逐渐减小,层位越高,应力越小;工作面侧向采空区顶板下沉量增大,采空区岩层应力逐渐增加,层位越高,应力越大;煤柱上方10,20 m岩层应力峰值、峰值点距切缝边缘距离与切缝深度呈非线性反比关系;采空区上方10,20 m岩层应力与切缝深度呈指数关系,说明深度切缝可以有效控制岩层应力分布、应力峰值及峰值点距切缝边缘的距离。  相似文献   

16.
《煤矿安全》2017,(7):62-65
以赵楼煤矿断层下盘一侧采空的11303(东)工作面地质条件为背景,采用FLAC~(3D)软件模拟分析了断层下盘工作面背向断层推进时,断层煤柱应力、工作面中部及采空侧端头超前支承应力演化规律。研究表明:工作面推进小于120 m时,断层煤柱应力集中程度逐渐增大,随工作面继续推进,断层煤柱集中应力变化不大。工作面推进小于80 m时,工作面中部超前支承应力峰值逐渐增大,而超过80 m后应力峰值变化不大。工作面采空侧端头受采动及相邻采空区影响,超前支承应力远大于实体煤侧,且在推进170 m时支承应力峰值达到最大。  相似文献   

17.
针对高强度开采综放工作面围岩结构复杂和巷道围岩变形严重,留设煤柱宽沿空掘巷造成资源浪费等问题。以申南凹矿20108工作面为工程背景,利用数值模拟软件对合理留设煤柱宽度进行研究,首先对留设不同宽度煤柱下巷道垂直应力和水平位移进行分析,发现当煤柱宽度小于6.0m时,无法满足巷道稳定性要求。当煤柱宽度大于6.0m时,此时煤柱内部稳定区域增加,煤柱稳定性较好,同时当煤柱宽度大于6m时,煤柱抗水平变形能力增强,水平位移较小,同时发现随着煤柱宽度的增大,巷道顶板和巷道两帮移近量呈现出逐步减小的趋势,综合分析确定最佳煤柱宽度为6m,并进行现场应用,巷道围岩控制效果明显。  相似文献   

18.
以朝阳煤矿3101(东)工作面工程地质条件为背景,采用FLAC~(3D)数值模拟,研究了工作面沿正断层上下盘推进过程中,断层煤柱对采动应力分布演化规律的影响特征。研究结果表明:断层对煤层顶底板的应力传播阻隔效应显著,导致断层煤柱易形成应力集中区;断层上盘的应力阻隔效应相对于下盘较弱,相同断层煤柱下,断层下盘煤柱先于上盘失稳;断层上盘应力集中区域都靠近煤壁,分布较为单一。下盘应力集中区域在断层煤柱大于40 m时分布在断层煤柱上,小于40 m时最高应力值逐渐转移到煤壁上。通过现场实例验证了工作面沿正断层布置时不同断层煤柱条件下煤柱应力演化的差异性,在现场实践中,需要根据具体的工程地质条件进行分析预测,提前做好巷道与工作面的维护措施,保证安全高效生产。  相似文献   

19.
《煤矿安全》2016,(10):205-208
鉴于特厚煤层预掘回撤通道围岩应力分布状态复杂的问题,采用数值模拟计算的方式分析了特厚煤层综放工作面预掘回撤通道采动应力场演化规律:回撤通道同回采工作面间煤柱中的应力呈动态增加态势,并且在净煤柱宽度为35 m左右时,回撤通道侧煤柱应力受到工作面显著影响;末采段煤柱的应力变化同煤柱稳定性有很大的关系,当末采段煤柱宽度为5 m时,应力达到最大值,导致煤柱完全屈服破坏。现场应用结果表明,回撤通道在净煤柱为40 m时变形量开始逐渐增加,当末采段煤柱为7 m左右时,回撤通道两帮的收缩量达到最大,煤柱失稳破坏,现场巷道变形监测结果同数值计算结果具有相同趋势。  相似文献   

20.
冲击地压矿井采区下山保护煤柱合理宽度研究   总被引:1,自引:0,他引:1  
留设合理宽度的采区下山保护煤柱是防范采区下山发生冲击地压的关键。为探讨冲击地压矿井采区下山保护煤柱宽度的确定方法,以李楼煤矿采区下山保护煤柱合理的宽度确定为工程背景,运用矿压理论研究了工作面向采区下山推采过程中覆岩运动规律、支承压力演化特征、冲击地压类型及其发生机制,分析了现场工作面推采过程中的微震监测数据和应力动态监测数据,综合确定了李楼煤矿工作面采动影响范围,提出了以防范各类冲击地压为原则的采区下山保护煤柱宽度的综合确定方法,并进行了工程验证。结果表明:①随着工作面向采区下山推进,采区下山保护煤柱宽度逐渐减小,工作面超前支承压力与采区下山侧向支承压力及两翼工作面超前支承压力将发生叠加、集中,震动附加应力与采区下山侧向支承压力叠加程度逐渐增大;②采区下山可能发生静动载叠加型、应力叠加型和蠕变型等3类冲击地压;③工作面超前、滞后采动影响距离为235 m,侧向采动影响距离为105.5 m;④从防范采区下山动静载叠加型、应力叠加型和延后蠕变型冲击地压的角度,综合确定李楼煤矿采区下山一侧保护煤柱宽度应不小于235 m。回采后期现场监测结果与收尾情况初步验证了当前李楼煤矿采区下山一侧保护煤柱240 m的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号