首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe here a nonpeptide neuropeptide Y Y1 receptor antagonist, 2,4-dioxo-1,5-bis(2-oxo-2-orthotolyl-ethyl)-3-[3-[3-([3-[3-(3-p iperidin-1-ylmethyl-phenoxy)-propylcarbamoyl]-propyl]-car bamoyloxymethyl)-phenyl]-ureido]-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diaz epine (Compound 1), which was previously synthesized as a linked type of dual cholecystokinin (CCK)-B and histamine H2 receptor antagonist. Compound 1 competitively inhibited [125I]peptide YY (PYY) binding to Y1 receptors in human neuroblastoma SK-N-MC cells with Ki of 6.4 +/- 1.0 nM, while it had no effect on [125I]PYY binding to Y2 or Y5 receptors even at 1 microM. Functionally, Compound 1 inhibited the Y1 receptor-mediated increase in cytosolic free Ca2+ concentration and Y1 receptor-mediated attenuation of cAMP accumulation in a dose-dependent manner with IC50 values of 95 +/- 5 and 320 +/- 10 nM in SK-N-MC cells, respectively. Neither its CCK-B receptor antagonistic moiety of Compound 1 (Compound 2) nor its histamine H2 receptor antagonistic moiety of Compound 1 (Compound 3) had any effect on [125I]PYY binding, suggesting that the entire structure of Compound 1 is essential for Y1 receptor blocking activity. It showed no significant activity (IC50 > 1 microM) in 30 receptor binding assays and 5 enzyme assays, with the exception of CCK-B and histamine H2 receptors. We conclude that Compound 1 is a useful molecule not only for studying the physiological role of neuropeptide Y but also for exploring more specific Y1 receptor antagonists.  相似文献   

2.
The drug 3 beta-[4'-iodophenyl]tropan-2 beta-carboxylic acid methyl ester (RTI-55) is a cocaine congener with high affinity for the dopamine transporter (Kd < 1 nM). The present study characterized [125I]RTI-55 binding to membranes prepared from rat, monkey and human caudates and COS cells transiently expressing the cloned rat dopamine (DA) transporter. Using the method of binding surface analysis, two binding sites were resolved in rat caudate: a high-capacity binding site (site 1, Bmax = 11,900 fmol/mg of protein) and a low-capacity site (site 2, Bmax = 846 fmol/mg of protein). The Kd (or Ki) values of selected drugs at the two sites were as follows: (Ki for high-capacity site and Ki for low-capacity site, respectively): RTI-55 (0.76 and 0.21 nM), 1-[2-diphenyl-methoxy)ethyl]-4-(3-phenylpropyl)piperazine (0.79 and 358 nM), mazindol (37.6 and 631 nM), 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (45.0 and 540 nM) and cocaine (341 and 129 nM). Nisoxetine, a selective noradrenergic uptake blocker, had low affinity for both sites. Serotonergic uptake blockers had a high degree of selectivity and high affinity for the low-capacity binding site (Ki of citalopram = 0.38 nM; Ki of paroxetine = 0.033 nM). The i.c.v. administration of 5,7-dihydroxytryptamine to rats pretreated with nomifensine (to protect dopaminergic and noradrenergic nerve terminals) selectively decreased the Bmax of site 2, strongly supporting the idea that site 2 is a binding site on the serotonin (5-HT) transporter. This serotonergic lesion also increased the affinity of [125I]RTI-55 for the DA transporter by 10-fold. The ligand selectivity of the caudate 5-HT transporter was different from the [I125]RTI-55 binding site on the 5-HT transporter present in membranes prepared from whole rat brain minus caudate. The [125I]RTI-55 binding to the DA transporter was further resolved into two components, termed sites 1a and 1b, by using human and monkey (Macaca mulatta) caudate membranes but not the membranes prepared from rat caudate or COS cells that transiently expressed the cloned cocaine-sensitive DA transporter complementary DNA. Similar experiments also resolved two components of the caudate 5-HT transporter. Viewed collectively, these data provide evidence that [125I]RTI-55 labels multiple binding sites associated with the DA and 5-HT transporters.  相似文献   

3.
This study demonstrated the existence of a specific binding site for angiotensin IV in porcine aortic endothelial cells. Non-equilibrium kinetic analyses at 37 degrees C allowed the calculation of a kinetic Kd of 0.44 nM. Pseudo-equilibrium saturation binding studies at 37 degrees C for 90 min indicated the presence of a single high-affinity site (Kd = 3.87 +/- 0.60 nM), saturable and abundant (Bmax = 9.64 +/- 1.44 pmol/mg protein). Competitive binding studies demonstrated the following rank order of effectiveness: angiotensin IV > angiotensin III > angiotensin II > angiotensin I > angiotensin II-(1-7), while 2-n-butyl-4-chloro-5-hydroxymethyl-1 [(2'-(1H-tetrazol-5-yl) biphenyl-4-yl) methyl] imidazol (DuP 753: losartan), 1-(4-amino-3-methyl-phenyl) methyl-5-diphenylisoethyl-4,5,6,7-tetrahydro-1H-imidazo [4,5-C] pyridine-6-carboxylic acid (PD 123177) or nicotinic acid-Tyr-(N alpha -benzyl-oxycarbonyl-Arg) Lys-His-Pro-Ile-OH (CGP 42112A) were inactive at the concentration of 100 microM. This binding site is, therefore, distinct from angiotensin II receptors, AT1 and AT2. Addition of the divalent cations Mg2+, Mn2+ or Ca2+ to the incubation buffer resulted in 90-95% inhibition of the [125I]angiotensin IV-specific binding to porcine aortic endothelial cells. Furthermore, the chelator, EGTA, at 5 mM increased the number of binding sites (Bmax = 17.8 +/- 2.5 pmol/mg protein), with no change in affinity (Kd = 5.7 +/- 1.3 nM). Exposure of porcine aortic endothelial cell membranes to the non-hydrolyzable GTP analog, GTP gamma S, had no effect on [125I]angiotensin IV binding. The presence of a high concentration of binding sites for angiotensin IV in porcine aortic endothelial cells suggests that this peptide may play an important role in the modulation of the cardiovascular system.  相似文献   

4.
The 5-hydroxytryptamine(HT)3 receptor subtype is present in the central nervous system (CNS) in low abundance, and few selective radiolabeled antagonists with high specific activity are available to study these sites. DAIZAC [desamino-3-iodo-(S)-zacopride; (S)-5-chloro-3-iodo-2-methoxy-N-(1-azobicyclo-[2.2. 2]oct-3-yl)benzamide] is a compound with high affinity and selectivity for the 5-HT3 receptor. Scatchard analysis of specific binding to NCB-20 cell membranes gave a Bmax of 340 +/- 58 fmol/mg protein and a KD of 0.14 +/- 0.03 nM, which is in agreement with the value previously reported in rat brain (KD = 0.15 nM). Nonspecific binding of [125I]DAIZAC in NCB-20 cells was <1% of total binding at the KD for DAIZAC compared with 17% in the rat brain preparation. Unlabeled DAIZAC (10 microM) showed minimal ability to displace binding of radiolabeled ligands selected for their affinities for other CNS receptor and uptake carrier binding sites. The discrimination ratio of DAIZAC for the 5-HT3 receptor over the M1 muscarinic binding site, the non-5-HT3 site at which it was most potent, was >2800. Serotonergic antagonists at every other known CNS serotonergic binding sites (3-30 microM) were ineffective in displacing [125I]DAIZAC binding in rat brain membranes. Similarly, antagonists (3-30 microM) for other nonserotonergic receptors and uptake sites were ineffective in displacing [125I]DAIZAC binding. Autoradiographic studies showed highest specific binding in area postrema and nucleus solitarius, with intermediate levels of binding in entorhinal cortex and hippocampus. DAIZAC inhibited 5-HT3 receptor-mediated inward cation current in NCB-20 cells with an IC50 of 0.24 nM. [125I]DAIZAC is a potent and highly selective ligand for in vitro studies of the 5-HT3 receptor.  相似文献   

5.
1. Radioligand binding properties of the adenosine receptor ligands, [3H]-1,3-dipropyl-8-cyclopentylxanthine ([3H]-DPCPX), and [3H]-R-phenylisopropyladenosine ([3H]-R-PIA) were investigated in frog brain membranes. 2. The specific binding of the adenosine antagonist, [3H]-DPCPX to frog brain membranes showed one binding site with Kd and Bmax values of 43.8 nM and 0.238 +/- 0.016 pmol mg-1 protein, respectively. Guanosine 5'-triphosphate (GTP, 100 microM) decreased to 72 +/- 7% and Mg2+ (8 mM) increased to 121 +/- 3% [3H]-DPCPX (40 nM) binding to frog brain membranes. 3. [3H]-DPCPX saturation binding experiments performed in the presence of Mg2+ (8 mM), or in the presence of GTP showed that Mg2+ ions decreased the Kd value of [3H]-DPCPX to 14 nM, and GTP increased this value to 65.6 nM. Bmax values were not significantly (P > 0.05) modified (0.261 +/- 0.018 pmol mg-1 protein, with Mg2+, and 0.266 +/- 0.026 pmol mg-1 protein, in presence of GTP) by the presence of Mg2+ or GTP. 4. The specific binding of [3H]-R-PIA (15 nM) was decreased to 37 +/- 6% by GTP (100 microM) and increased to 123 +/- 4% by Mg2+ (8 mM). [3H]-R-PIA saturation binding experiments performed in the presence of Mg2+ (8 mM) showed one binding site with Kd and Bmax values of 0.9 nM and 0.229 +/- 0.008 pmol mg-1 of protein, respectively. 5. The concentration-inhibition curves of adenosine agonists and antagonists versus [3H]-DPCPX binding showed the following order of potencies: CPA> R-PIA~ NECA> S-PIA> > CGS 21680, for the agonists, and XAC ~-DPCPX> > XCC> PACPX, for the antagonists.6. The present results suggest that the adenosine binding site in the frog brain membranes is G-protein coupled, but that the antagonist affinities and the pharmacological profile is different from the Al or A2 adenosine receptors.  相似文献   

6.
A selective high affinity VIP1 receptor antagonist [Acetyl-His1, D-Phe2, Lys15, Arg16, Leu17] VIP(3-7)/GRF(8-27) or PG 97-269 was synthesized, by analogy with recently obtained selective VIP1 receptor agonists. The properties of the new peptide were evaluated on Chinese hamster ovary (CHO) cell membranes expressing either the rat VIP1-, rat VIP2- or the human VIP2-recombinant receptors and on LoVo cell membranes expressing exclusively the human VIP1 receptor. The IC50 values of 125I-VIP binding inhibition by PG 97-269 were 10, 2000, 2 and 3000 nM on the rat VIP1-, rat VIP2-, human VIP1- and human VIP2 receptors, respectively. PG 97-269 had a negligible affinity for the PACAP I receptor type. It did not stimulate adenylate cyclase activity, but inhibited competitively effect of VIP on the VIP1 receptor mediated stimulation of adenylate cyclase activity. The Ki values were respectively of 15 +/- 5 nM and 2 +/- 1 nM for the rat and human VIP1 receptors. Thus the described molecule in the first reported VIP antagonist with an affinity in the nM range and with a high selectivity for the VIP1 receptor subclass. It may be useful for evaluation of the physiological role of VIP in rat and human tissues.  相似文献   

7.
8.
Mouse embryonic carcinoma P19 cell aggregates treated with retinoic acid (RA) sequentially differentiate into neurons and astrocytes, whereas attached cells develop a mesodermal phenotype. The expression of calcitonin (CT) and PTH/PTH-related protein (PTHrP) receptors was investigated in embryonic cells, and during neural and mesodermal differentiation. In embryonic P19 cells, specific binding of [125I]salmon (s) CT(1-32) ([125I]sCT(1-32)) was 56 fmol/mg protein, and of [125I]chicken (ch) [Tyr36]PTHrP(1-36) amide ([125I]chPTHrP(1-36)) < 0.5 fmol/mg protein. Correspondingly, cAMP was maximally stimulated 47-fold by sCT(1-32) (EC50 0.05 nM) and 3-fold by chPTHrP(1-36) (EC50 1.3 nM). Receptor autoradiography revealed specific binding of [125I]sCT(1-32) to the undifferentiated P19 cells, but not to RA induced neurons and astrocytes. At the same time, [125I]sCT(1-32) binding and cAMP accumulation by sCT were gradually decreased. But, specific binding of [125I]chPTHrP(1-36) was raised at least 6-fold compared with embryonic cells to 3 fmol/mg protein, in parallel with a 10-fold higher maximal cAMP accumulation. A similar, but delayed suppression of CT and stimulation of PTH/PTHrP receptor expression was observed during mesodermal cell differentiation. The results indicate that CT receptors are associated with undifferentiated P19 cells, whereas PTH/PTHrP receptors are expressed in RA induced neural and mesodermal cells.  相似文献   

9.
The distribution of iodinated margatoxin ([125I]margatoxin) binding sites in rat was investigated by autoradiography. Rat striatum expresses a high density of margatoxin binding sites and, therefore, the effects of margatoxin, charybdotoxin and iberiotoxin have been studied on [3H]dopamine release from rat striatal slices in vitro. Margatoxin (0.1-100 nM) and charybdotoxin (10-1000 nM), but not iberiotoxin increased the spontaneous and the electrically evoked [3H]dopamine release. [3H]dopamine release by margatoxin was inhibited by tetrodotoxin and omega-conotoxin GVIA, but not by atropine, naloxone, N(omega)-nitro-L-arginine and neurokinin or neurotensin receptor antagonists. In the buffer solution used for release experiments, [125I]margatoxin labels a maximum of 0.12 pmol of sites/mg protein in rat striatal membranes with a Kd of 5 pM. [125I]margatoxin binding was inhibited by margatoxin (Ki of 4 pM), charybdotoxin (Ki of 162 pM) but not by iberiotoxin. We conclude that inhibition of margatoxin-sensitive voltage-gated K+ channels increases [3H]dopamine release demonstrating their role in repolarization of nigrostriatal projections. In contrast, iberiotoxin-sensitive, high-conductance Ca2+-activated K+ channels are not involved in release of [3H]dopamine.  相似文献   

10.
The aim of the present study was to determine whether local administration of endothelin induces the release of dopamine in the rat striatum and to characterize and localize endothelin receptors in this brain region. Local injection of endothelin-1 (10 pmol) into the ventral striatum of urethane-anaesthetized rats caused an increase of 8 microM in the extracellular concentration of dopamine as measured by in vivo chronoamperometry. The peak increase in dopamine concentration occurred within 5 min of endothelin injection. Injection of the selective endothelin-B receptor agonist [Ala1.3,11.15]endothelin-1 (10 pmol) also caused an increase in extracellular dopamine concentration, suggesting that endothelin is acting at the endothelin-B receptor to elicit its effect. In rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway, the response to local injection of endothelin-1 (10 pmol) was significantly inhibited on the lesioned side as compared to the non-lesioned side. In contrast, pretreatment of the rats with the N-methyl-D-aspartate receptor antagonist dizocilpine maleate (5 mg/kg, i.p.) or the nitric oxide synthase inhibitor NG-nitro-L-arginine (3 mg/kg, i.p.) did not alter the endothelin-induced release of dopamine. In binding studies, addition of endothelin-1 displaced [125I]endothelin-1 with a Ki of 220 pM. The endothelin-B receptor antagonist BQ788 displaced [125I]endothelin-1 with a Ki of 120 nM, whereas the endothelin-A receptor antagonist BQ123 produced only a 25% displacement at 10 microM, suggesting that endothelin receptors in the striatum are of the endothelin-B subtype. In rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal dopamine system, [125I]endothelin-1 binding was reduced by 53% in lesioned striatum compared to non-lesioned striatum, with no difference in the Kd. These data provide evidence that endothelin acts on a homogeneous population of endothelin-B receptors within the striatum to cause the release of dopamine and that a significant proportion of these receptors is located on dopaminergic neurons.  相似文献   

11.
The presence of receptor for arginine vasotocin (AVT) in the vagina of the oviduct of the hen was demonstrated by the use of radioligand binding assays on membrane fractions of the tissue. The binding to [125I]AVT was highly competitive with unlabeled AVT. Scatchard analysis revealed that the binding sites are of a single class. The equilibrium dissociation constant (Kd) was 0.48+/-0.05 nM (x+/-SEM; n = 6) in laying hens holding a hard-shelled egg in the uterus (shell gland) and 1.01+/-0.02 nM (n = 6) in nonlaying hens. The maximum binding capacity (Bmax) was 0.41+/-0.04 pmol/mg protein (n = 6) in laying hens and 0.81+/-0.01 pmol/mg protein (n = 6) in nonlaying hens. The Kd value of the laying hens varied from 0.39 to 1.20 nM during an oviposition cycle, showing an increase just prior to oviposition, and the Bmax value also varied from 0.30 to 0.66 pmol/mg protein, showing a gradual increase after 6 h prior to oviposition. In the nonlaying hen, both values were almost constant during a 24-h day. The changes in the binding affinity and capacity of AVT receptor of the vagina may be related to oviposition in the hen.  相似文献   

12.
Thieno-triazolodiazepines WEB 2086 and BN 50739 have been described as the potent PAF receptor antagonists. Binding of radiolabeled [3H]WEB 2086 has been widely employed to characterize PAF receptors in different cells. In a search for a PAF receptor in isolated rat hepatocytes, we discovered that the binding of [3H]WEB to rat hepatocytes was highly specific but had a relatively low affinity with a Kd of 113 nM and Bmax of 0.65 pmol/10(6) cells in freshly isolated cell suspension and Kd of 1.65 muM and Bmax of 2.0 pmol/plate in cultured hepatocytes. No consistent specific binding of [3H]PAF itself was found in the same cell preparations. The binding of [3H]flunitrazepam in the presence of the peripheral type of benzodiazepine receptor antagonist Ro 5-4864 was saturated and exhibited a K(i) of 3.8 nM and Bmax of 3.5 pmol/plate. The central type of benzodiazepine receptor antagonist clonazepam was competed for the [3H]flunitrazepam binding, however with a much lower affinity. Various antagonists inhibited the binding of [3H]WEB 2086 with a rank order BN 50739>Ro 5-4864 > or = clonazepam. Interestingly, bicuculline, specific antagonist of GABA(A) recognition sites, also significantly reduced the binding of [3H]WEB 2086. The binding of [3H]flunitrazepam was inhibited with a rank potency BN 50739>WEB 2086. Taken together, these findings suggest that the specific binding of PAF receptor antagonists WEB 2086 and BN 50739 in rat hepatocytes does not involve PAF receptors and occurs via peripheral benzodiazepine and, possibly GABA(A) receptor sites.  相似文献   

13.
The Harderian glands are innervated by sympathetic fibers originating in the superior cervical ganglia. The aim of this study is to characterize the beta-adrenergic receptors in the rat Harderian gland. The characteristics of beta-adrenergic receptors were determined in crude membrane preparations from rat Harderian gland, using [125I]iodocyanopindolol ([125I]CYP) as radioligand. The binding of the ligand to the receptor is rapid, reversible, saturable, specific and dependent on time, temperature and membrane concentration. At 30 degrees C, stoichiometric data suggest the presence of one binding site with a Kd value of 0.29 nM and Bmax of 32 pmol/L. The interaction shows a high degree of specificity for beta-adrenergic agonists and blockers, as suggested by competitive displacement experiment with isoproterenol (IC50 = 19.1 nM), propranolol (IC50 = 28.1 nM), and norepinephrine (IC50 = 96.3 nM). Clonidine, yohimbine, methoxamine, and prazosin are ineffective at concentrations up to 1 microM. In the other hand, binding of [125I]CYP by Harderian gland membranes exhibits day-night variations. Binding values are low during the daytime and increase progressively late in the evening to reach a maximum at 2200 h (2 h after the onset of dark period), but decreased to the end of the dark period (0600 h). In conclusion, the results presented in this paper show the functional and pharmacological characterization of beta-adrenergic receptors in the rat Harderian gland. This neurotransmitter may play a physiological role at this level regulating, at least, processes such as a thyroid hormone metabolism.  相似文献   

14.
The intestinal polyamine transporters have not yet been identified. Our aim was to characterize specific polyamine binding sites in rabbit intestinal brush-border membranes (IBBM) as a starting step for identification of polyamine transporters. This was investigated at 4 degrees and at low membrane concentration. Saturation isotherms for [3H]putrescine (PUT) binding indicated a single population of sites (puT) with a dissociation equilibrium constant Kd of 3.8 microM and a density of sites Bmax of 58 pmol/mg of protein. [3H]spermidine (SPD) binding also involved only one class of sites (spD), albeit with a lower affinity (Kd = 106 microM) and higher abundance (Bmax = 1240 pmol/mg of protein) than puT. On the contrary, [14C]spermine (SPM) bound two classes of sites (spM1 and spM2) differing in their affinity (Kd = 2.5 and 31.4 microM) and abundance (Bmax = 467 and 1617 pmol/mg of protein, respectively). Membrane association of SPM at 4 degrees was much faster than that of SPD and PUT, both of which proceeded at a similar rate. In contrast to PUT and SPD dissociation, SPM dissociation at 23 degrees did not follow a first-order reaction. Specifically bound [3H]PUT, unlike [3H]SPD and [14C]SPM, dissociated at 23 degrees independently of the addition of nonradioactive polyamine. Methylglyoxal-bis-(guanylhydrazone) was an extremely potent inhibitor of PUT binding (Ki = 3.2 +/- 1.5 nM), but as with PUT and cadaverine (CAD), it did not alter [3H]SPD and [14C]SPM binding substantially. The intestinal brush-border membrane may contain at least three sites specific for polyamine binding and exhibiting different ligand selectivity. Site puT might be associated with the transport system already described for intestinal uptake of PUT.  相似文献   

15.
Saturable specific binding of glycine to synaptosomal membranes from plexiform layers of the retina has been described, which seems to correspond to the modulatory site on NMDA-receptors (26). Spermine inhibited specific [3H]glycine binding to membranes from synaptosomal fractions from the outer (P1) and the inner (P2) plexiform layers of 1-3 day-old chick retinas in a dose-dependent manner with an IC50 = 35 microM for the P1 fraction and 32 microM for the P2 fraction. Kinetic experiments and non-linear regression analysis of [3H]glycine-specific binding showed a Kd approximately 100-150 nM in both fractions, and a higher Bmax (4.11 +/- 0.47 pmol/mg protein) for the inner plexiform layer compared to the outer plexiform layer (Bmax = 2.76 +/- 0.25 pmol/mg protein). Strychnine-insensitive [3H]glycine binding was inhibited by 100 microM spermine, due to a reduction in Bmax (P1 = 0.84 +/- 0.16 pmol/mg protein; P2 = 0.81 +/- 0.16 pmol/mg protein) without affecting the Kd. Association and dissociation constants in the absence and presence of 50 microM spermine remained unchanged. Results demonstrate the presence of a single modulatory site for spermine on NMDA receptors, in both synaptic layers of the chick retina.  相似文献   

16.
Gastrin-releasing peptide (GRP) receptor antagonists were synthesized and their ability to interact with small-cell lung cancer (SCLC) cells determined. [125I] BW1023U90, bound with high affinity (Kd = 2 nM) to a single class of sites (Bmax = 55 fmol/mg protein) using SCLC cell line NCI-H345. [125I] BW1023U90 binding was time dependent and reversible even at 37 degrees C as the ligand was minimally internalized. Specific [125I] BW1023U90 binding was inhibited with high affinity by GRP as well as bombesin (BB) but not neuromedin B (NMB). BW1023U90 inhibited the ability of BB to elevate cytosolic Ca2+ and increase the growth of SCLC cells. A BW1023U90 analogue, BW2258U89 (10 micrograms/day, SC) slowed SCLC xenograft format on in nude mice and [125I] BW 1023U90 localized to SCLC tumors 1 h after injection into nude mice. BW2258U89 (4% by weight) was placed in microspheres and slowly released over a 3-week period in nude mice bearing SCLC xenografts. The microspheres containing BW2258U89 strongly inhibited SCLC growth in vivo. A radioimmunoassay was developed for the GRP receptor antagonists and the rabbit antiserum cross-reacted totally with BW2258U89 or BW1023U90. BW2258U89 immunoreactivity (5 nM) was detected in the plasma of nude mice containing the microspheres after 1 week. These data suggest that GRP receptor antagonists bind to receptors on SCLC tumors.  相似文献   

17.
This study was undertaken to establish the presence and characteristics of receptors for [D-Trp6]LH-RH on the membranes of human ovarian cancer. Specific binding of [125I, D-Trp6]LH-RH was found in 29 of 37 (78.4%) ovarian cancers and in 6 of 11 (54.5%) non-malignant human ovaries. Ligand binding was dependent on time and plasma membrane concentration in a fashion expected of a peptide hormone. Saturation, kinetic and displacement data were consistent with the presence of a highly specific, single class of non-cooperative binding site. On the basis of receptors affinity, LH-RH-receptor-positive ovarian cancers could be divided into two groups: high affinity group (Kd=2.71 +/- 0.60 nM; Bmax=0.46 +/- 0.07 pmol/mg membrane protein) comprising 55% of tumors, and low affinity group (Kd=78.0 +/- 19.6 nM; Bmax=9.44 +/- 2.68 pmol/mg membrane protein) which included 45% of tumors. LH-RH antagonist Cetrorelix showed an affinity to LH-RH receptors on ovarian cancers 14 times higher than the agonist [D-Trp6]LH-RH. Using 125I-epidermal growth factor, specific high affinity receptors were also detected in membranes from 13 of 24 (54%) ovarian cancers and 5 of 11 (45%) non-malignant ovaries. The demonstration of LH-RH receptors in human ovarian cancers provides a rationale for the use of therapeutic approaches based on LH-RH analogues in this malignancy. The probable involvement of growth factors in the development of ovarian cancers suggests the merit of trying a combined therapy based on analogs of LH-RH and somatostatin for this carcinoma.  相似文献   

18.
A novel irreversible 5-HT1A receptor binding ligand, NCS-MPP (4-(2'- methoxy-phenyl)-1-[2'-(N-2"-pyridyl)-p-isothiocyanobenzamido]- ethyl-piperazine), based on the new 5-HT1A receptor antagonist p-MPPI (4-(2'-methoxy-phenyl)-1-[2'-(N-2"-pyridyl)-p-iodobenzamido]-ethyl -piperazine ), was synthesized, and its binding characteristics were evaluated using in vitro homogenate binding with rat hippocampal membranes. The Ki value of NCS-MPP was estimated to be 1.8 +_ 0.2 nM using analysis of concentration-dependent inhibition for the binding of [125I]p-MPPI to 5-HT1A receptors. NovaScreen of NCS-MPP showed low to moderate binding affinities to alpha-1, alpha-2-adrenergic and 5-HT2 receptors, with Ki values of 350, 420, and 103 nM, respectively. These data strongly suggest that the ligand bound to 5-HT1A receptors with high affinity and high selectivity. Irreversible inhibition of [125I]p-MPPI binding by NCS-MPP following a 5 min incubation at room temperature was concentration dependent; the inhibition increased to 50% at a concentration less than 10 nM, and became more pronounced (90%) at 400 nM. Under similar assay conditions, NCS-MPP was significantly less efficient in irreversibly inhibiting agonist ligand [125I]8-OH-PIPAT binding to 5-HT1A receptors at lower concentrations (<10nM). After pretreatment of membranes with a low concentration of NCS-MPP (2nM), there was an apparent loss of [125I]p-MPPI binding sites, as expected, but no change in the binding affinity (Kd) was observed. However, the significant increase in Kd at a higher concentration of NCS-MPP (50 nM) indicated that there may be a secondary alkylation site, which may not be directly involved in p-MPPI binding to receptors; nevertheless, it would lead to an increased Kd value. The availability of an irreversible ligand, NCS-MPP, may provide a useful tool for studies of 5-HT1A receptors in the central nervous system.  相似文献   

19.
1. Binding of D,L-(E)-2-amino-4-[3H]-propyl-5-phosphono-3-pentenoic acid ([3H]-CGP 39653), a high affinity, selective antagonist at the glutamate site of the N-methyl-D-aspartate (NMDA) receptor, was investigated in rat brain by means of receptor binding and quantitative autoradiography techniques. 2. [3H]-CGP 39653 interacted with striatal and cerebellar membranes in a saturable manner and to a single binding site, with KD values of 15.5 nM and 10.0 nM and receptor binding densities (Bmax values) of 3.1 and 0.5 pmol mg-1 protein, respectively. These KD values were not significantly different from that previously reported in the cerebral cortex (10.7 nM). 3. Displacement analyses of [3H]-CGP 39653 in striatum and cerebellum, performed with L-glutamic acid, 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and glycine showed a pharmacological profile similar to that reported in the cerebral cortex. L-Glutamic acid and CPP produced complete displacement of specific binding with Ki values not significantly different from the cerebral cortex. Glycine inhibited [3H]CGP 39653 binding with shallow, biphasic curves, characterized by a high and a low affinity component. Furthermore, glycine discriminated between these regions (P < 0.005, one-way ANOVA), since the apparent Ki of the high affinity component of the glycine inhibition curve (KiH) was significantly lower (Fisher's protected LSD) in the striatum than the cortex (33 nM and 104 nM, respectively). 4. Regional binding of [3H]-CGP 39653 to horizontal sections of rat brain revealed a heterogeneous distribution of binding sites, similar to that reported for other radiolabelled antagonists at the NMDA site (D-2-[3H]-amino-5-phosphonopentanoic acid ([3H]-D-AP5) and [3H]-CPP). High values of binding were detected in the hippocampal formation, cerebral cortex and thalamus, with low levels in striatum and cerebellum. 5. [3H]-CGP 39653 binding was inhibited by increasing concentrations of L-glutamic acid, CPP and glycine. L-Glutamic acid and CPP completely displaced specific binding in all regions tested, with similar IC50 values throughout. Similarly, glycine was able to inhibit the binding in all areas considered: 10 microM and 1 mM glycine reduced the binding to 80% and 65% of control (average between areas) respectively. The percentage of specific [3H]-CGP 39653 binding inhibited by 1 mM glycine varied among regions (P < 0.05, two-ways ANOVA). Multiple comparison, performed by Fisher's protected LSD method, showed that the inhibition was lower in striatum (72% of control), with respect to cortex (66% of control) and hippocampal formation (58% of control). 6. The inhibitory action of 10 microM glycine was reversed by 100 microM 7-chloro-kynurenic acid (7-CKA), a competitive antagonist of the glycine site of the NMDA receptor channel complex, in all areas tested. Moreover, reversal by 7-CKA was not the same in all regions (P < 0.05, two-ways ANOVA). In fact, in the presence of 10 microM glycine and 100 microM 7-KCA, specific [3H]-CGP 39653 binding in the striatum was 131% of control, which was significantly greater (Fisher's protected LSD) than binding in the hippocampus and the thalamus (104% and 112% of control, respectively). 7. These results demonstrate that [3H]-CGP 39653 binding can be inhibited by glycine in rat brain regions containing NMDA receptors; moreover, they suggest the existence of regionally distinct NMDA receptor subtypes with a different allosteric mechanism of [3H]-CGP 39653 binding modulation through the associated glycine site.  相似文献   

20.
Functional roles of adrenoceptors in parietal cells were pharmacologically investigated using isolated canine parietal cells. In the crude membranes obtained from preparations highly purified in parietal cells (> 95% of purity), the specific binding of [3H]dihydroalprenolol (DHA) was observed with a Kd value of 2.9 nM and Bmax of 234 fmol/mg protein, while the specific binding of [3H]prazosin and [3H]rauwolscine were not attained. Propranolol concentration-dependently reduced the specific binding of [3H]dihydroalprenolol with a Ki value of 2.6 nM. Isoproterenol concentration-dependently stimulated [14C]aminopyrine accumulation in preparations enriched in parietal cells (about 70% purity) with the maximum at 10 nM. Isoproterenol increased the content of cyclic AMP in preparations enriched in parietal cells (70%) with the maximum at 100 nM. The isoproterenol-induced stimulatory effect of [14C]aminopyrine accumulation in preparations enriched in parietal cells (70%) was completely abolished by 1 microM propranolol but not by 1 microM phentolamine. In the presence of 1 microM propranolol, 100 microM noradrenaline did not affect carbachol- and histamine-induced [14C]aminopyrine accumulation in preparations enriched in parietal cells (70%). The present study suggests that stimulation of beta-adrenoceptors located on canine parietal cells evokes acid production in a cyclic-AMP-dependent manner. Furthermore, a possibility arises that canine parietal cells are not the site of action of alpha-adrenoceptors in mediating inhibition of gastric acid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号