首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The thermal inactivation of the highly thermo-resistant test phage (P680), was investigated in whey, whey protein concentrate (WPC) and whey cream. After a heat treatment at 90 °C for 15 min, only a 6-log reduction was obtained and the phage was still detectable in each medium. Kinetic parameters for the inactivation of the phage were calculated for temperatures ranging from 70 to 90 °C using a non-linear model. With the help of the parameters obtained, the lines of equal effects showing a 9-log inactivation of the phage were calculated. High temperature short time pasteurization was not sufficient for 9-log inactivation of phage P680 in skim milk, whey, WPC or whey cream. Temperature and time combinations ranging from 100 °C for 20 min to 140 °C for 2 s are necessary for a 9-log inactivation of P680.  相似文献   

2.
The effect of thermal treatments and several biocides on the viability of Lactobacillus virulent phage P1 was evaluated. Times to achieve 99% inactivation (T99) of phage at different treatment conditions were calculated. The thermal treatments applied were 63, 72, and 90°C in 3 suspension media (de Man, Rogosa, Sharpe broth, reconstituted skim milk, and Tris magnesium gelatin buffer). Phage P1 was completely inactivated in 5 and 10 min at 90 and 72°C, respectively; however, reconstituted skim milk provided better thermal protection at 63°C. When phage P1 was treated with various biocides, 800 mg/L of sodium hypochlorite was required for total inactivation (~7.3 log reduction) within 60 min, whereas treatment with 100% ethanol resulted in only a ~4.7 log reduction, and 100% isopropanol resulted in a 5.2-log reduction. Peracetic acid (peroxyacetic acid) at the highest concentration used (0.45%) resulted in only a ~4.-log reduction of phage within 60 min. The results of this study provide additional information on effective treatments for the eradication of potential phage infections in dairy plants.  相似文献   

3.
4.
The goal of this research was to produce homogenized milk containing 2% fat with a refrigerated shelf life of 60 to 90 d using minimum high temperature, short time (HTST) pasteurization in combination with other nonthermal processes. Raw skim milk was microfiltered (MF) using a Tetra Alcross MFS-7 pilot plant (Tetra Pak International SA, Pully, Switzerland) equipped with Membralox ceramic membranes (1.4 μm and surface area of 2.31 m2; Pall Corp., East Hills, NY). The unpasteurized MF skim permeate and each of 3 different cream sources were blended together to achieve three 2% fat milks. Each milk was homogenized (first stage: 17 MPa, second stage: 3 MPa) and HTST pasteurized (73.8°C for 15 s). The pasteurized MF skim permeate and the 3 pasteurized homogenized 2% fat milks (made from different fat sources) were stored at 1.7 and 5.7°C and the standard plate count for each milk was determined weekly over 90 d. When the standard plate count was >20,000 cfu/mL, it was considered the end of shelf life for the purpose of this study. Across 4 replicates, a 4.13 log reduction in bacteria was achieved by MF, and a further 0.53 log reduction was achieved by the combination of MF with HTST pasteurization (73.8°C for 15 s), resulting in a 4.66 log reduction in bacteria for the combined process. No containers of MF skim milk that was pasteurized after MF exceeded 20,000 cfu/mL bacteria count during 90 d of storage at 5.7°C. The 3 different approaches used to reduce the initial bacteria and spore count of each cream source used to make the 2% fat milks did not produce any shelf-life advantage over using cold separated raw cream when starting with excellent quality raw whole milk (i.e., low bacteria count). The combination of MF with HTST pasteurization (73.8°C for 15 s), combined with filling and packaging that was protected from microbial contamination, achieved a refrigerated shelf life of 60 to 90 d at both 1.7 and 5.7°C for 2% fat milks.  相似文献   

5.
Type of thermal process [high temperature, short time pasteurization (HTST) or ultra-high temperature pasteurization (UHT)] and homogenization sequence (before or after pasteurization) were examined for influence on the physicochemical properties of natural cream (20% milk fat) and creams formulated with 20% low-melt, fractionated butteroil emulsified with skim milk, or buttermilk and butter-derived aqueous phase. Homogenization sequence influenced physicochemical makeup of the creams. Creams homogenized before pasteurization contained more milk fat surface material, higher phospholipid levels, and less protein at the milk fat interface than creams homogenized after pasteurization. Phosphodiesterase I activity was higher (relative to protein on lipid globule surface) when cream was homogenized before pasteurization. Creams formulated with skim milk and modified milk fat had relatively more phospholipid adsorbed at the milk fat interface. Ultra-high-temperature-pasteurized natural and reformulated creams were higher in viscosity at all shear rates investigated compared with HTST-pasteurized creams. High-temperature, short time-pasteurized natural cream was more viscous than HTST-pasteurized reformulated creams at most shear rates investigated. High-temperature, short time-pasteurized creams had better emulsion stability than UHT-pasteurized creams. Cream formulated with buttermilk had creaming stability most comparable to natural cream, and cream formulated with skim milk and modified butteroil was least stable to creaming. Most creams feathered in a pH range of 5.00 to 5.20, indicating that they were moderately stable to slightly unstable emulsions. All processing sequences yielded creams within sensory specifications with the exception of treatments homogenized before UHT pasteurization and skim milk formulations homogenized after UHT pasteurization.  相似文献   

6.
Potential application of high hydrostatic pressure processing (HPP) as a method for virus inactivation was evaluated. A 7-log10 PFU/ml hepatitis A virus (HAV) stock, in tissue culture medium, was reduced to nondetectable levels after exposure to more than 450 MPa of pressure for 5 min. Titers of HAV were reduced in a time- and pressure-dependent manner between 300 and 450 MPa. In contrast, poliovirus titer was unaffected by a 5-min treatment at 600 MPa. Dilution of HAV in seawater increased the pressure resistance of HAV, suggesting a protective effect of salts on virus inactivation. RNase protection experiments indicated that viral capsids may remain intact during pressure treatment, suggesting that inactivation was due to subtle alterations of viral capsid proteins. A 7-log10 tissue culture infectious dose for 50% of the cultures per ml of feline calicivirus, a Norwalk virus surrogate, was completely inactivated after 5-min treatments with 275 MPa or more. These data show that HAV and a Norwalk virus surrogate can be inactivated by HPP and suggest that HPP may be capable of rendering potentially contaminated raw shellfish free of infectious viruses.  相似文献   

7.
The effect of high pressure processing (HPP) compared to Holder pasteurization (HoP) (62.5 °C, 30 min), on the inactivation of cytomegalovirus (CMV) and hepatitis A virus (HAV) inoculated human milk pools (n = 10) and culture media (n = 3) was studied. Samples were retained as untreated controls, treated by HoP (62.5 °C, 30 min) or with one of six different HPP protocols (350 MPa, 500 MPa, 600 MPa for 8- or 10-min at <10 °C). Macronutrient concentration and lactoferrin were measured to confirm milk quality. Both HPP and HoP reduced CMV by >4.8-log PFU/mL and >0.9-log PFU/mL in culture medium and human milk, respectively. HoP reduced HAV by 3.4-log PFU/mL and 3.1-log PFU/mL in culture medium and human milk, respectively. HPP treatments of 500 or 600 MPa reduced HAV by >5.7-log PFU/mL and >4-log PFU/mL in culture medium and in human milk, respectively. Macronutrients (fat, total protein, carbohydrate) and energy composition was not affected by any treatment. Lactoferrin concentration decreased by 35% ± 21% (SD) after HoP, but not HPP.Industrial relevanceThis study confirms that HPP is effective in inactivating representative enveloped and non-enveloped viruses in human milk and reducing bacterial load, with no adverse effect on macronutrient and energy composition. For these reasons, evidence it reduces bacteria, and increased efficiency in which milk can be processed, HPP shows great promise in replacing HoP in human milk banking.  相似文献   

8.
The objectives of this study were to measure the impact of CO2 injection temperature (0 degree C and 40 degrees C) on the pH and freezing point (FP) of (a) milks with different fat contents (i.e., 0, 15, 30%) and (b) creams with 15% fat but different fat characteristics. Skim milk and unhomogenized creams containing 15 and 30% fat were prepared from the same batch of whole milk and were carbonated at 0 and 40 degrees C in a continuous flow CO2 injection unit (230 ml/min). At 0 degree C, milk fat was mostly solid; at 40 degrees C, milk fat was liquid. At the same total CO2 concentration with CO2 injection at 0 degree C, milk with a higher fat content had a lower pH and FP, while with CO2 injection at 40 degrees C, milks with 0%, 15%, and 30% fat had the same pH. This indicated that less CO2 was dissolved in the fat portion of the milk when the CO2 was injected at 0 degree C than when it was injected at 40 degrees C. Three creams, 15% unhomogenized cream, 15% butter oil emulsion in skim milk, and 15% vegetable oil emulsion in skim milk were also carbonated and analyzed as described above. Vegetable oil was liquid at both 0 and 40 degrees C. At a CO2 injection temperature of 0 degree C, the 15% vegetable oil emulsion had a slightly higher pH than the 15% butter oil emulsion and the 15% unhomogenized cream, indicating that the liquid vegetable oil dissolved more CO2 than the mostly solid milk fat and butter oil. No difference in the pH or FP of the 15% unhomogenized cream and 15% butter oil emulsion was observed when CO2 was injected at 0 degree C, suggesting that homogenization or physical dispersion of milk fat globules did not influence the amount of CO2 dissolved in milk fat at a CO2 injection temperature of 0 degree C. At a CO2 injection temperature of 40 degrees C and at the same total CO2 concentration, the 15% unhomogenized cream, 15% vegetable oil emulsion, and 15% butter oil emulsion had similar pH. At the same total concentration of CO2 in cream, injection of CO2 at low temperature (i.e., < 4 degrees C) may produce a better antimicrobial effect during refrigerated shelf life due to the higher concentration of CO2 in the skim portion of the cream.  相似文献   

9.
10.
The effect of several biocides and thermal treatments on the viability of four Lactobacillus helveticus phages was investigated. Times to achieve 99% inactivation of phages at 63 degrees C and 72 degrees C in three suspension media were calculated. The three suspension media were tris magnesium gelatin buffer (10 mM Tris-HCl, 10 mM MgSO4, and 0.1% wt/vol gelatin), reconstituted skim milk sterile reconstituted commercial nonfat dry skim milk, and Man Rogosa Sharpe broth. The thermal resistance depended on the phage considered, but a treatment of 5 min at 90 degrees C produced a total inactivation of high titer suspensions of all phages studied. The results obtained for the three tested media did not allow us to establish a clear difference among them, since some phages were more heat resistant in Man Rogosa Sharpe broth and others in tris magnesium gelatin buffer. From the investigation on biocides, we established that sodium hypochlorite at a concentration of 100 ppm was very effective in inactivating phages. The suitability of ethanol 75%, commonly used to disinfect utensils and laboratory equipment, was confirmed. Isopropanol turned out to be, in general, less effective than ethanol at the assayed concentrations. In contrast, peracetic acid (0.15%) was found to be an effective biocide for the complete inactivation of all phages studied after 5 min of exposure. The results allowed us to establish a basis for adopting the most effective thermal and chemical treatments for inactivating phages in dairy plant and laboratory environments.  相似文献   

11.
This study evaluated the ability of spore-forming Bacillus spp. to resist milk pasteurization conditions from 72 to 150 degrees C. Spores from the avirulent surrogate Sterne strain of Bacillus anthracis, as well as a representative strain of a common milk contaminant that is also a pathogen, Bacillus cereus ATCC 9818, were heated at test temperatures for up to 90 min in dH2O, brain heart infusion broth, or skim milk. In skim milk, characteristic log reductions (log CFU per milliliter) for B. anthracis spores were 0.45 after 90 min at 72 degrees C, 0.39 after 90 min at 78 degrees C, 8.10 after 60 min at 100 degrees C, 7.74 after 2 min at 130 degrees C, and 7.43 after 0.5 min at 150 degrees C. Likewise, log reductions (log CFU per milliliter) for viable spores of B. cereus ATCC 9818 in skim milk were 0.39 after 90 min at 72 degrees C, 0.21 after 60 min at 78 degrees C, 7.62 after 60 min at 100 degrees C, 7.37 after 2 min at 130 degrees C, and 7.53 after 0.5 min at 150 degrees C. No significant differences (P < 0.05) in thermal resistance were observed for comparisons of spores heated in dH2O or brain heart infusion broth compared with results observed in skim milk for either strain tested. However, spores from both strains were highly resistant (P < 0.05) to the pasteurization temperatures tested. As such, pasteurization alone would not ensure complete inactivation of these spore-forming pathogens in dH2O, synthetic media, or skim milk.  相似文献   

12.
Heat resistance of Bacillus cereus spores (ATCC 7004, 4342, and 9818) heated in different types of milk (skim, whole, and concentrated skim milk), skim milk containing stabilizing additives (sodium citrate, monopotassium phosphate, or disodium phosphate, 0.1%), and cream was investigated. Thermal resistance experiments were performed at temperatures within the range of 92 to 115 degrees C under continuous monitoring of pH. For strain 4342 no significant differences (P < 0.05) in D values were detected in any case. For strains 7004 and 9818 higher D values of about 20% were obtained in whole and concentrated skim milk than those calculated in skim milk. From all stabilizing additives tested, only sodium citrate and sodium phosphate increased the heat resistance for strain 9818. However, when the menstruum pH was measured at the treatment temperature, different pH values were found between the heating media. The differences in heat resistance observed could be due to a pH effect rather than to the difference in the substrates in which spores were heated. In contrast, when cream (fat content 20%) was used, lower D values were obtained, especially for strains 7004 and 9818. z values were not significantly modified by the milk composition, with an average z value of 7.95+/-0.20 degrees C for strain 7004, 7.88+/-0.10 degrees C for strain 4342, and 9.13+/-0.16 degrees C for strain 9818.  相似文献   

13.
Emulsifying properties of milk-derived components influence the physical characteristics of reformulated creams. Fractionated butter oils with different melting ranges (low-melt: 10 to 25 degrees C; medium-melt: 25 to 35 degrees C) were recombined into fluid dairy systems using skim milk, or sweet buttermilk and butter-derived aqueous phase to manufacture 20% milk fat creams. Separation temperature (49 degrees C or 55 degrees C) in obtaining emulsifying components was examined for its effect on physical properties of pasteurized reformulated creams. Rate of creaming, viscosity, feathering, and sensory characteristics of reformulated and natural creams stored at 3.3 degrees C were evaluated over a 13-d period. Creaming rate of reformulated and natural creams was unaffected by formulation and was most influenced by duration of storage. Melting characteristics of butter oils influenced viscosity at some shear rates. With the exception of natural cream, all formulations were consistent in apparent viscosity during the 2-wk storage period. All creams feathered in a pH range of 4.70 to 5.20 and were classified as moderately stable to slightly unstable. All reformulated and natural creams met sensory quality specifications with the exception of creams formulated with skim milk and lower melting range butteroil. Creams formulated with buttermilk, butter-derived aqueous phase, and lower-melting range butter oil most closely mimicked natural creams with regard to sensory quality and viscosity.  相似文献   

14.
Milk from four dairy herds identified by the Michigan Department of Agriculture as containing less than .3 ppm (fat basis) physiologically incorporated polybrominated biphenyls was processed individually into cream, skim milk, butter, and stirred curd cheese. Pasteurized and freeze-dried whole milk, skim milk, and cream, spray-dried whole milk and skim milk, and condensed whole milk were made also. Polybrominated biphenyls were concentrated in the high-fat products. Pasteurized skim milk, buttermilk, and whey had slightly more polybrominated biphenyls than pasteurized whole milk on a fat basis. Spray-drying reduced the polybrominated biphenyls in whole milk and skim milk while pasteurization, freeze-drying, aging of cheese, and condensation were not effective.  相似文献   

15.
The effect of cold storage (5 C, 24 h) and heat treatment (60 C, 5 min) of milk on activities of free and membrane-bound xanthine oxidase has been studied. Both treatments enhanced total xanthine oxidase activity in milk. Activity of membrane-bound xanthine oxidase increased and free xanthine oxidase decreased in buttermilk while it increased in skim milk on cold storage. Heat of milk increased free and membrane-bound xanthine oxidase activities in both buttermilk and skim milk. The state of xanthine oxidase activity in skim milk from reconstituted milk, which was prepared by mixing xanthine oxidase inactivated skim milk and fresh cream, showed that only the free enzyme migrated from the cream phase to skim milk on cold storage. Very little xanthine oxidase activity was detectable in skim milk on heat treatment of the reconstituted milk sample. The overall increased activity of xanthine oxidase in milk during cold storage or heat treatment may not be due to the release of fat globule membrane enzyme to skim milk.  相似文献   

16.
This study evaluated the efficacy of ozone, chlorine, and hydrogen peroxide to destroy Listeria monocytogenes planktonic cells and biofilms of two test strains, Scott A and 10403S. L. monocytogenes was sensitive to ozone (O3), chlorine, and hydrogen peroxide (H2O2). Planktonic cells of strain Scott A were completely destroyed by exposure to 0.25 ppm O3 (8.29-log reduction, CFU per milliliter). Ozone's destruction of Scott A increased when the concentration was increased, with complete elimination at 4.00 ppm O3 (8.07-log reduction, CFU per chip). A 16-fold increase in sanitizer concentration was required to destroy biofilm cells of L. monocytogenes versus planktonic cells of strain Scott A. Strain 10403S required an ozone concentration of 1.00 ppm to eliminate planktonic cells (8.16-log reduction, CFU per milliliter). Attached cells of the same strain were eliminated at a concentration of 4.00 ppm O3 (7.47-log reduction, CFU per chip). At 100 ppm chlorine at 20 degrees C, the number of planktonic cells of L. monocytogenes 10403S was reduced by 5.77 log CFU/ml after 5 min of exposure and by 6.49 log CFU/ml after 10 min of exposure. Biofilm cells were reduced by 5.79 log CFU per chip following exposure to 100 ppm chlorine at 20 degrees C for 5 min, with complete elimination (6.27 log CFU per chip) after exposure to 150 ppm at 20 degrees C for 1 min. A 3% H2O2 solution reduced the initial concentration of L. monocytogenes Scott A planktonic cells by 6.0 log CFU/ml after 10 min of exposure at 20 degrees C, and a 3.5% H2O2 solution reduced the planktonic population by 5.4 and 8.7 log CFU/ml (complete elimination) after 5 and 10 min of exposure at 20 degrees C, respectively. Exposure of cells grown as biofilms to 5% H2O2 resulted in a 4.14-log CFU per chip reduction after 10 min of exposure at 20 degrees C and in a 5.58-log CFU per chip reduction (complete elimination) after 15 min of exposure.  相似文献   

17.
Our objective was to determine the role that immunoglobulins and somatic cells (SC) play in the gravity separation of milk. The experiment comprised 9 treatments: (1) low-temperature pasteurized (LTP; 72°C for 17.31 s) whole milk; (2) LTP (72°C for 17.31 s) whole milk with added bacteria and spores; (3) recombined LTP (72°C for 17.31 s) whole milk with added bacteria and spores; (4) high-temperature pasteurized (HTP; 76°C for 7 min) whole milk with added bacteria and spores; (5) HTP (76°C for 7 min) whole milk with added bacteria and spores and added colostrum; (6) HTP (76°C for 7 min) centrifugally separated, gravity-separated (CS GS) skim milk with HTP (76°C for 7 min) low-SC cream with added bacteria and spores; (7) HTP (76°C for 7 min) CS GS skim milk with HTP (76°C for 7 min) high-SC cream with added bacteria and spores; (8) HTP (76°C for 7 min) CS GS skim milk with HTP (76°C for 7 min) low-SC cream with added bacteria and spores and added colostrum; and (9) HTP (76°C for 7 min) CS GS skim milk with HTP (76°C for 7 min) high-SC cream with added bacteria and spores and added colostrum. The milks in the 9 treatments were gravity separated at 4°C for 23 h in glass columns. Five fractions were collected by weight from each of the column treatments, starting from the bottom of the glass column: 0 to 5%, 5 to 90%, 90 to 96%, 96 to 98%, and 98 to 100%. The SC, fat, bacteria, and spores were measured in each of the fractions. The experiment was replicated 3 times in different weeks using a different batch of milk and different colostrum. Portions of the same batch of the frozen bacteria and spore solutions were used for all 3 replicates. The presence of both SC and immunoglobulins were necessary for normal gravity separation (i.e., rising to the top) of fat, bacteria, and spores in whole milk. The presence of immunoglobulins alone without SC was not sufficient to cause bacteria, fat, and spores to rise to the top. The interaction between SC and immunoglobulins was necessary to cause aggregates of fat, SC, bacteria, and spores to rise during gravity separation. The SC may provide the buoyancy required for the aggregates to rise to the top due to gas within the SC. More research is needed to understand the mechanism of the gravity-separation process.  相似文献   

18.
Effect of thermal buffer zone was examined on the microbial inactivation through a pressure-assisted thawing. A plastic bag of bacterial suspension enclosed with a thermal buffer zone was frozen at − 50 °C, and treated for 20 min with a pressure-assisted thawing in water of 4 °C. A reduction of 8-log cycle was obtained at 200 MPa for the stationary growth phase cells of Escherichia coli that was suspended in 1% skim milk and enclosed with wheat flour/water paste and two polytetrafluoroethylene plates. When 100% ethanol was used as a thermal buffer and the samples were pressured at 194 MPa in 1% skim milk, levels of E. coli and Listeria monocytogenes were reduced by 6-log cycle and 7-log cycle, respectively. Staphylococcus aureus decreased by 4-log cycle.Industrial relevanceThis work will contribute to new developments in the pressure processing of foods, since the use of a thermal buffer zone in pressure-assisted thawing was very effective in enhancing the level of pressure-induced microbial inactivation.  相似文献   

19.
Whipping cream, skim milk powder and soft cheese were produced throughout the year. Whipping cream manufactured in spring and winter produced significantly higher overrun and better serum stability, and whipping time was related to buffering capacity of raw milk. Heat stability of reconstituted skim milk powder (RSMP) at 9% total solids (TS) was greater in summer and autumn, and >25% TS throughout the year. It was positively related to the protein content of raw milk, but negatively with fat. In contrast to other dairy products, no significant effect of season on the properties of soft cheese was found.  相似文献   

20.
Triclabendazole (TCB) is a flukicide used in the treatment of liver fluke in cattle; however, its use is currently prohibited in lactating dairy cows. In this study, following administration of 10% Fasinex (triclabendazole, Novartis Animal Health UK Ltd., Camberley, UK) the milk of 6 animals was used to manufacture dairy products, to ascertain if TCB residues in milk migrate into dairy products. The detection limit of the ultra-high-performance liquid chromatography-tandem mass spectrometry method used was 0.67 μg/kg. The highest concentrations of TCB residue measured, within the individual cow milk yield, was 1,529 ± 244 µg/kg (n = 6), on d 2 posttreatment. Days 2 and 23 posttreatment represented high and low residue concentrations, respectively. At each of these 2 time points, the milk was pooled into 2 independent aliquots and refrigerated. Milk products, including cheese, butter, and skim milk powder were manufactured using pasteurized and unpasteurized milk from each aliquot. The results for high residue milks demonstrated that TCB residues concentrated in the cheese by a factor of 5 (5,372 vs. 918 µg/kg for cheese vs. milk) compared with the starting milk. Residue concentrations are the sum of TCB and its metabolites, expressed as keto-TCB. Residues were concentrated in the butter by a factor of 9 (9,177 vs. 1,082 μg/kg for butter vs. milk) compared with the starting milk. For milk, which was separated to skim milk and cream fractions, the residues were concentrated in the cream. Once skim milk powder was manufactured from the skim milk fraction, the residue in powder was concentrated 15-fold compared with the starting skim milk (7,252 vs. 423 µg/kg for powder vs. skim milk), despite the high temperature (185°C) required during powder manufacture. For products manufactured from milk with low residue concentrations at d 23 posttreatment, TCB residues were detected in butter, cheese, and skim milk powder, even though there was no detectable residue in the milk used to manufacture these products. Triclabendazole residues were concentrated in some milk products (despite manufacturing treatments), exceeding residue levels in the starting milk and, depending on the storage conditions, may be relatively stable over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号