首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Han F  Huynh BH  Shi H  Lin B  Ma Y 《Analytical chemistry》1999,71(7):1265-1269
Pteridines are a class of compounds excreted in urine, the levels of which are found to elevate significantly in tumor-related diseases. For the first time, we have developed a method, based on high-performance capillary electrophoresis (HPCE) and laser-induced fluorescence (LIF) detection, to monitor the pteridine levels in urine. HPCE provides better separation than high-performance liquid chromatography and the LIF detector enables us to detect minute amounts of pteridines in body fluid. Eight different pteridine derivatives were well separated in 0.1 M Tris-0.1 M borate-2 mM EDTA buffer (pH 8.75) using a 60-cm fused-silica capillary (50-micron i.d., 35-cm effective length), six of which were detected and characterized in urine samples from normal persons and different cancer patients. The detection limits of these pteridines are under 1 x 10(-10) M. The levels of neopterin, pterine, xanthopterin, and pterin-6-carboxylic acid were found to be significantly elevated in urine excreted by cancer patents, while the level of isoxanthopterin dropped in these patients. No significant change of biopterin level was found between healthy individuals and cancer patients. This method can be used in clinical laboratories either for cancer monitoring or for precancer screening.  相似文献   

2.
In two-dimensional capillary electrophoresis, a sample undergoes separation in the first dimension capillary by sieving electrophoresis. Fractions are periodically transferred across an interface into a second dimension capillary, where components are further resolved by micellar electrokinetic capillary electrophoresis. Previous instruments employed one pair of capillaries to analyze a single sample. We now report a multiplexed system that allows separation of five samples in parallel. Samples are injected into five first-dimension capillaries, fractions are transferred across an interface to 5 second-dimension capillaries, and analyte is detected by laser-induced fluorescence in a five-capillary sheath-flow cuvette. The instrument produces detection limits of 940 +/- 350 yoctomoles for 3-(2-furoyl)quinoline-2-carboxaldehyde labeled trypsin inhibitor in one-dimensional separation; detection limits degrade by a factor of 3.8 for two-dimensional separations. Two-dimensional capillary electrophoresis expression fingerprints were obtained from homogenates prepared from a lung cancer (A549) cell line, on the basis of capillary sieving electrophoresis (CSE) and micellar electrophoresis capillary chromatography (MECC). An average of 131 spots is resolved with signal-to-noise greater than 10. A Gaussian surface was fit to a set of 20 spots in each electropherogram. The mean spot width, expressed as standard deviation of the Gaussian function, was 2.3 +/- 0.7 transfers in the CSE dimension and 0.46 +/- 0.25 s in the MECC dimension. The standard deviation in spot position was 1.8 +/- 1.2 transfers in the CSE dimension and 0.88 +/- 0.55 s in the MECC dimension. Spot capacity was 300.  相似文献   

3.
The violet (415 nm) diode laser is used for indirect laser-induced fluorescence detection in capillary electrophoretic separations of inorganic anions and chemical warfare agent degradation products. Inorganic anions were detected using 8-hydroxypyrene-1,3,6-trisulfonic acid as the indirect probe and achieved submicromolar (40-80 ppb) detection limits in a 2-min separation. The chemical warfare agent degradation products methylphosphonic acid, ethyl methylphosphonate, isopropyl methylphosphonate, and pinacolyl methylphosphonate were detected using the porphyrin tetrakis(4-sulfophenyl)porphine as the indirect probe and achieved detection limits of 0.1 microM (9 ppb), which are 1 order of magnitude better than that achieved using indirect UV detection. Baseline stability achieved with the violet diode laser was excellent, with dynamic reserve (DR) values of > 1000, which are 15 times better than that achieved using an unstabilized HeCd laser.  相似文献   

4.
The sheath-flow cuvette is a key component in a high-sensitivity post-column laser-induced fluorescence detector for capillary electrophoresis. Most designs are based on commercial cuvettes originally manufactured for use in a flow cytometer. In these devices, a quartz flow chamber is held in a stainless-steel fixture that is difficult to machine and subjects the cuvette to a torque when sealed, which frequently leads to damage of the flow chamber. In this report we present a design for a cuvette that may easily be constructed. This design uses compression to hold and seal the quartz flow chamber without applying torque. The system produces detection limits (3sigma) of 115 yoctomoles (70 copies) for FQ-labeled carbonic anhydrase.  相似文献   

5.
Ascorbic acid is an important cellular metabolite involved in many biochemical pathways. A method to quantitate ascorbic acid and dehydroascorbic acid in individual neurons and neuronal tissues is described with detection limits of 320 pM (430 zmol). The method uses microvial sampling, derivatization with 4,5-dimethyl-1,2-phenylenediamine, capillary electrophoresis separation, and laser-induced fluorescence detection and quantifies the ascorbic acid and dehydroascorbic acid levels with less than a 15-min total analysis time including sample preparation and derivatization. Ascorbic acid and dehydroascorbic acid levels are measured using functionally characterized and identified neurons of Aplysia californica, Pleurobranchaea californica, and Lymnaea stagnalis -three well-recognized models in cellular and system neuroscience. Multiple assays of a particular identified neuron (e.g., metacerebral cells from Aplysia) show a high level of reproducibility, while endogenous intracellular concentrations of ascorbate are neuron-specific. Ascorbic acid concentrations in the neurons studied range from 0.19 to 6.2 mM for Aplysia and 0.12 to 0.22 mM for Lymnaea. In contrast, concentrations of ascorbic acid observed in heterogeneous tissues such as ganglia (with connective tissues, glia, blood vessels, neuropile, and areas with intercellular spaces), 4-190 microM, are significantly lower than the single-cell values.  相似文献   

6.
Individual liposome measurements by capillary electrophoresis with postcolumn laser-induced fluorescence detection facilitated the determination of liposome property distributions, two-dimensional plots, and an improved characterization of a liposomal preparation. This advancement in liposome analysis was feasible by using a high-sensitivity postcolumn laser-induced fluorescence detector wired for millisecond response. For each individual liposome containing fluorescein, peak height and migration time were determined. From these measurements the individual entrapped volumes and electrophoretic mobilities were determined. Distribution analysis of these properties facilitated comparison of various liposome dilutions and indicated that the method is reproducible and unaffected by the density of liposomes (10(7)-10(9) liposomes/mL) in the suspension. Furthermore, liposomes showed entrapped volumes that vary from 0.3 to 13 fL with apparent radius varying from 370 nm to 1.8 microns. Two-dimensional plots of reduced mobility versus kappa R (Debye parameter x liposome radius) revealed that the liposomes resuspended from a dried film of phospholipids are heterogeneous in regard to the surface charge density of individual liposomes. The described method has the potential of becoming a new tool for characterization of commercial liposomal preparations and theoretical studies.  相似文献   

7.
The metabolism of glycosphingolipids by the malaria-causing parasite Plasmodium falciparum plays an important role in the progression of the disease. We report a new and highly sensitive method to monitor the uptake of glycosphingolipids in infected red blood cells (iRBCs). A tetramethylrhodamine-labeled glycosphingolipid (GM1-TMR) was used as a substrate. Uptake was demonstrated by fluorescence microscopy. The iRBCs were lysed with a 15% solution of saponin and washed with phosphate buffered saline to release intact parasites. The parasites were further lysed and the resulting homogenates were analyzed by capillary electrophoresis with laser-induced fluorescence detection. The lysate from erythrocytes infected at 1% parasitemia generated a signal 20 standard deviations larger than uninfected erythrocytes, which suggests that relatively low infection levels can be studied with this technique.  相似文献   

8.
A magnetic beads based immunoaffinity capillary electrophoresis method for total Immunoglobulin E quantification in serum has been developed. The method combines speed, automation ability, and minimal sample consumption. Only 1 microL of serum is required while the whole immunoaffinity capillary electrophoresis method is performed in less than 50 min. The concomitant use of online immunocapture, transient isotachophoresis, and laser-induced fluorescence detection provides a sensitivity in the low picomolar range and a highly linear fluorescence response over 4 orders of magnitude (IgE concentration ranging from 2.4 to 2400 ng/mL). After validation with a reference material, the method has been successfully applied to the quantification of total IgEs in patient sera. The results compared well with classical ImmunoCap data.  相似文献   

9.
Aminoacyl-tRNA synthetases (aaRSs) are a family of enzymes whose function in specific aminoacylation of tRNAs is central to the process of protein translation, which occurs in the cytoplasm of all living cells. In addition to their well-established cytoplasmic localization, fluorescence microscopy studies and analysis of the aminoacylation state of nuclear tRNAs have revealed that synthetases are localized in the nuclei of cells from several species including Xenopus laevis and Saccharomyces cerevisiae. Whether nuclear localization of aaRSs is a general phenomenon that occurs in all eukaryotic cells is an open question. In the work described here, human methionyl-tRNA synthetase (MRS) and human lysyl-tRNA synthetase (KRS) were expressed in human-derived DeltaH2-1 osteosarcoma cells as enhanced green fluorescent protein (EGFP) fusion proteins. The subcellular localization of these EGFP-aaRSs was first probed by fluorescence microscopy using cells that coexpressed EGFP-aaRS and a nuclear marker fusion protein, nuDsRed. As expected, both aaRSs were present in the cytosol, while only EGFP-MRS was also clearly localized in the nucleus. To confirm these findings, and to investigate a potentially more sensitive, general method for nuclear localization studies, capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze single DeltaH2-1 cells expressing both EGFP-aaRS and nuDsRed. While cytosolic EGFP signals were detected for both EGFP-MRS and EGFP-KRS, only EGFP-MRS was found in the nucleus, along with nuDsRed. The detection of EGFP-MRS in nuclei of DeltaH2-1 cells demonstrates the feasibility of using CE-LIF analysis in nuclear localization studies of proteins in mammalian cells.  相似文献   

10.
This technical note describes a detector capable of simultaneously monitoring scattering and fluorescence signals of individual particles separated by capillary electrophoresis. Due to its nonselective nature, scattering alone is not sufficient to identify analyte particles. However, when the analyte particles are fluorescent, the detector described here is able to identify simultaneously occurring scattering and fluorescent signals, even when contaminating particles (i.e., nonfluorescent) are present. Both fluorescent polystyrene particles and 10-nonyl acridine orange (NAO)-labeled mitochondria were used as models. Fluorescence versus scattering (FVS) plots made it possible to identify two types of particles and a contaminant in a mixture of polystyrene particles. We also analyzed NAO-labeled mitochondria before and after cryogenic storage; the mitochondria FVS plots changed with storage, which suggests that the detector reported here is suitable for monitoring subtle changes in mitochondrial morphology that would not be revealed by monitoring only fluorescence or scattering signals.  相似文献   

11.
Doxorubicin (DOX) treatment of NS-1 mouse hybridoma cells results in the formation of zeptomole amounts of metabolites per cell that are difficult to determine by confocal microscopy or HPLC. The native fluorescence of DOX and its metabolites together with laser-induced fluorescence detection (HF) has previously been used to detect a maximum of four components. In this study, we use capillary electrophoresis with postcolumn LIF (CE-LIF) to separate and detect 12 components attributed to DOX metabolism, resulting from treatment of NS-1 cells with 25 microM DOX for 8 h. The so-called metabolites 8 and 10 have been identified as doxorubicinone (DOXone) and 7-deoxydoxorubicinone (7-deoxyDOXone), respectively, by comigration with the corresponding synthetic standard. Due to comigration of DOX with doxorubicinol (DOXone), the presence of DOXone had to be determined separately by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The rest of the metabolites remain unidentified and are referred to by their number assignment. In comparison with the whole cell lysate, fractionation by differential centrifugation results in a better separation resolution of metabolites due to reduced amounts of metabolites in each fraction. This approach was chosen to compare the distribution of 13 metabolites in three subcellular fractions that form a pellet at < 1,400 g, 1,400-14,000 g, and > 14, 000 g and that generically are enriched in nuclei, organelles (mitochondria and lysosomes), and cytosolic components, respectively. The most abundant metabolite, DOXone, was estimated to be 90 +/- 15, 18 +/- 2, and 60 +/- 12 amol/cell (n = 5) in the nuclear-enriched, organelle-enriched, and cytosole-enriched fractions, respectively. In contrast, the total amount of other metabolites in a given fraction varied from 0 to 1,300 zmol. 7-DeoxyDOXone is the only metabolite that was present at similar levels in the three fractions. Other salient observations are metabolites 3, 7, and 11 are not detectable in the nuclear-enriched, organelle-enriched, and cytosole-enriched fractions, respectively; metabolite 9 and DOXone are more abundant in the nuclear-enriched fraction than in the other two fractions. The observations presented here suggest that subcellular fractionation followed by CE-LIF could be a powerful diagnostic for monitoring drug distribution, which is highly relevant to DOX cytoxicity studies.  相似文献   

12.
Ma S  Nashabeh W 《Analytical chemistry》1999,71(22):5185-5192
A general method for the analysis of asparaginyl-linked (N-linked) carbohydrate moieties of an IgG1 monoclonal antibody is described here. The antibody, rituximab, is a mouse/human chimeric antibody to human CD20 antigen. The glycans present on rituximab are neutral complex biantennary oligosaccharides with zero, one, and two terminal galactose residues (G0, G1, and G2, respectively). To monitor the variation of the glycosylation during manufacture, the glycans were first enzymatically released from the antibody via digestion with peptide-N-glycosidase F, then derivatized with a charged fluorophore, 8-aminopyrene-1,3,6-trisulfonic acid and further separated by capillary electrophoresis with laser-induced fluorescence detection. All observed glycans were fully resolved, including the positional isomers of G1. The exact nature of the isomers in terms of the location of the terminal galactose was further characterized via multiple enzymatic digestion steps including mannosidase with activity toward specific Man(alpha 1,3) linkage. The optimization and several key parameters, i.e., enzymatic digestion and derivatization, in the assay development will be discussed. Moreover, to ensure that the assay can be used in routine lot release testing, the assay was validated and found to be accurate and precise. The analytical approach described is suitable for characterization as well as routine testing of the N-linked glycan content in any IgG1 monoclonal antibody and glycoproteins in general.  相似文献   

13.
3-(4-Carboxybenzoyl)-2-quinolinecarboxaldehyde has been utilized as a precolumn derivatization agent for various amino sugars. Constituents of various biological mixtures can be converted to highly fluorescent isoindole derivatives, separated by high-performance capillary electrophoresis and determined at attomole (10(-18) mol) levels by a laser-induced fluorescence detector. This method has been applied to the analysis of monosaccharides and acid-hydrolyzed polysaccharides. Carbohydrate moieties derived from a glycoprotein were also tagged and determined.  相似文献   

14.
Capillary gel electrophoresis is demonstrated for the four-spectral-channel sequencing technique of Smith, the two-spectral-channel sequencing technique of Prober, and the one-spectral-channel sequencing technique of Richardson and Tabor. Sequencing rates up to 1000 bases/h are obtained at electric field strengths of 465 V/cm. At lower electric field strengths, capillary electrophoresis produces useful data for fragments greater than 550 nucleotides in length with 2 times better resolution than slab gel electrophoresis. An on-column detector produces detection limits of 200 zmol (1 zmol = 10(-21) mol = 600 molecules) for the four-spectral-channel technique. A postcolumn detector, based on the sheath flow cuvette, produces detection limits of 20 and 2 zmol for the two- and one-spectral-channel techniques, respectively.  相似文献   

15.
X-ray fluorescence spectroscopy is demonstrated here as a novel, element-specific detector for capillary electrophoresis. Monochromatic 10 keV X-rays from a synchrotron light source are used to excite core electrons, causing emission of characteristic Kalpha X-ray fluorescence (XRF) lines. Using this technique, XRF energies provide elemental identification, while XRF intensities can be used to quantitate the metal composition of each eluent. An X-ray transparent polymer coupling is used to create a window for the on-line, X-ray detection. This coupling contributes no measurable extra-column variance, and electrophoretic mobilities for the metal complexes used as model solutes are highly reproducible. The combination of XRF detection with capillary electrophoresis (CE-XRF) creates the first on-line detection system that is element-specific, nondestructive, and directly applicable to a broad range of applications including nonelectroactive species. CE-XRF is successfully demonstrated here for high binding-constant complexes of Fe(III), Co(II), Cu(II), and Zn(II). Within a single injection, electropherograms are obtained for each element of interest, with the element identity obtained directly from the emission energy. In contrast with ICPMS, this detection technique is directly on-line and does not require volatilization of the eluent. As a result, element-specific detection is not limited by the sample or the buffer volatility or atomization efficiency. Simultaneous XRF and UV absorbance detection can be used to provide an on-line determination of metal/chelate ratios. Although XRF detection limits are presently only in the 0.1 mM (0.5 ng) range, both collection geometry and incident intensity have yet to be optimized. Further optimization is expected to enhance this detection limit by another 2-3 orders of magnitude. As a result, the advent of XRF detection combined with the separating power of CE presents new possibilities for on-line, element-specific analysis.  相似文献   

16.
A method using capillary electrophoresis with UV laser-induced native fluorescence detection was developed as a sensitive and selective assay for the simultaneous determination of etoposide and etoposide phosphate in human plasma. Laser-induced native fluorescence detection with a frequency-doubled argon ion laser at an excitation wavelength of 257 nm was used for the simultaneous assay of etoposide and etoposide phosphate in plasma to improve the sensitivity compared to that obtained with UV absorption. The detection system consists of an imaging spectrograph and an intensified CCD camera which views an illuminated 1.5-mm section of the capillary. This setup is able to record the whole emission spectra of the analytes to achieve additional wavelength-resolved electropherograms. In the concentration range of 200 microg/L-50 mg/L in plasma for etoposide and 100 microg/L-20 mg/L for etoposide phosphate, coefficients of correlation were better than 0.998. Within-day variation determined with three different concentrations showed accuracies ranging from 91.0 to 109.3% for etoposide and from 91.2 to 109.9% for etoposide phosphate (n = 6) with a precision of about 8%. Day-to-day variation presented accuracies ranging from 91.8 to 107.9% for etoposide and from 94.4 to 109.3% for etoposide phosphate with a relative standard deviation less than 6% (n = 5). To our knowledge, this is the first method for the simultaneous quantification of etoposide and etoposide phosphate in plasma samples.  相似文献   

17.
A coupling method of solid-phase microextraction (SPME) and capillary isoelectric focusing (CIEF) with laser-induced fluorescence (LIF) whole column imaging detection (WCID) was developed for the analysis of proteins. Unlike other liquid-phase separation methods and conventional CIEF, proteins are focused into stationary bands within a pH gradient in CIEF-WCID. Thus, CIEF-WCID is the most compatible liquid-phase separation method for coupling with SPME, which can effectively resolve the problems associated with the slow desorption kinetics of SPME in a liquid phase. By combining SPME and CIEF-WCID, the desorption time can be as long as necessary, allowing complete desorption without any band broadening and analyte carryover. By using this method, R-phycoerythrin in water can be extracted by SPME in 10 min, and subsequently analyzed by CIEF-LIF-WCID within 20 min, providing a limit of detection of 3.5 x 10(-12) M (S/N = 3). The feasibility of the SPME-CIEF-LIF-WCID method was demonstrated by extracting and analyzing extracellular phycoerythrins in cultured cyanobacteria samples. Extracellular phycoerythrins at the nanomolar level were extracted and analyzed in 30 min, while avoiding the interference of the cyanobacteria cells.  相似文献   

18.
The analysis of proteins under denaturing conditions is routinely performed with SDS-polyacrylamide gel electrophoresis. The automated capabilities of CE, use of nongel sieving matrixes, and on-line optical detection by either ultraviolet (UV) absorption or laser-induced fluorescence (LF) promise to revolutionize this method. While direct on-line detection of proteins is possible as a result of their intrinsic ability to absorb light in the UV part of the spectrum (detection sensitivity comparable to Coomassie Blue staining of gels), LIF provides more powerful detection but requires pre- or postcolumn fluorescence labeling of the proteins. The development of a protocol analogous to that used for double-stranded DNA analysis, where fluorescent intercalating dyes are simply included in the separation medium, would simplify size-based protein analysis immensely. This would avoid the complications associated with covalent modification of the proteins but still exploit the sensitivity of LIF detection. We demonstrate that this is possible with CE and microchip detection by incorporating, into the run buffer, a fluorescent dye that interacts hydrophobically with protein-SDS complexes. Key to this is a dye that fluoresces significantly when bound to protein-SDS complexes but not when bound to SDS micelles. Comparison of electropherograms from CE-based denaturing protein analysis with UV and LIF detection indicates that the presence of the fluor does not alter separation of the proteins. Moreover, comparison with electropherograms generated from microchip electrophoresis with LIF detection shows that equivalent patterns can be obtained. Despite the unoptimized nature of this separation system, a dynamic labeling protocol that allows for LIF detection for proteins is attractive and has the potential to circumvent the tedious labeling steps typically required.  相似文献   

19.
An on-line two-dimensional (2D) capillary electrophoresis (CE) system consisting of capillary isoelectric focusing (CIEF) and capillary gel electrophoresis (CGE) was introduced. To validate this 2D system, a dialysis interface was developed by mounting a hollow fiber on a methacrylate resin plate to hyphenate the two CE modes. The two dimensions of capillary shared a cathode fixated into a reservoir in the methacrylate plate; thus, with three electrodes and only one high-voltage source, a 2D CE framework was successfully established. A practical 2D CIEF-CGE experiment was carried out to deal with a target protein, hemoglobin (Hb). After the Hb variants with different isoelectric points (pIs) were focused in various bands in the first-dimension capillary, they were chemically mobilized one after another and fed to the second-dimension capillary for further separation in polyacrylamide gel. During this procedure, a single CIEF band was separated into several peaks due to different molecular weights. The resulting electrophoregram is quite different from that of either CIEF or CGE; therefore, more information about the studied Hb sample can be obtained.  相似文献   

20.
He H  McGown LB 《Analytical chemistry》2000,72(24):5865-5873
A scheme for multiplex detection of dye-labeled DNA fragments in DNA sequencing is described in which on-the-fly, frequency-domain fluorescence lifetime detection is used to discriminate among the dye-labeled fragments of the four terminal bases in a single-lane CE separation. Two four-dye systems were evaluated, one excited at 488 nm and the other, at 514 nm. The 488 nm system proved successful for four-decay detection. Base calling was achieved either directly from on-the-fly lifetimes or from lifetime-resolved electropherograms recovered for each base from the electropherogram of the mixture of sequencing reaction products. The latter method was found to be more accurate (99% for two bases and 98.5% for three bases) and could achieve longer read lengths, but it was unsuccessful for sequencing of all four bases. The first method gave a base-calling accuracy of 96% for four-base sequencing over the fragment length range of 41-220 bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号