首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
输电网扩展规划是一个非常复杂的大规模组合优化问题,提出了一种改进粒子群算法求解此类优化问题。该算法针对传统的粒子群算法存在的缺点,对粒子群迭代行动策略、初始化策略以及惯性权重的调整进行了改进,并将单纯形法引入到算法中,弥补算法容易陷入局部最优的缺点,提高了粒子群算法的搜索效率,使其更适用于输电网扩展规划。将其应用到Garver-6节点系统和一个18节点系统,计算结果证明该算法的可行性和有效性。  相似文献   

2.
应用传统粒子群算法于电力系统无功优化问题存在收敛精度不高、陷入局部最优的缺点,而利用粒子群群体每次迭代的最优值取代其本次迭代的最差值,可提高粒子群算法的寻优特性。在鸡西电网的无功优化规划中,先对鸡西电网的每个节点进行灵敏度分析,选择部分节点做为无功补偿的候选节点,之后将所提算法应用于鸡西电网进行实际计算和分析,经过此方法对鸡西电网进行优化规划计算后,较好的改善了鸡西电网的电压水平和无功分布,提高了供电质量,大大降低了线损,有良好的理论价值和实用价值。  相似文献   

3.
由于标准粒子群算法(SPSO)存在后期搜索效率太低的问题,提出了一种速度更快的粒子群优化算法(FPSO).FPSO保留了SPSO前期的全局搜索能力,但改变了SPSO算法后期的搜索策略,使其迭代次数随当前适应度值的变化而自适应改变,从而提高了SPSO算法后期的计算效率.通过实验对FPSO算法中适应度函数的设计进行了讨论,并分析了FPSO算法的应用前景.仿真结果表明,FPSO算法在单峰、多峰和带约束条件的测试函数中都有良好的效果.  相似文献   

4.
针对装备制造业中存在的装配序列规划问题,建立最小化装配次数和方向改变次数之和为目标的优化模型。针对优化模型提出具有随机性特点的初始种群启发式编码,设计粒子群算法。为避免粒子陷入局部最优,采用不同程度的局部搜索操作方式,达到增强粒子群算法局部搜索的能力。实例验证表明,该算法在解决装配序列规划问题上具有优势,求解效果较好。  相似文献   

5.
所提出的算法将粒子群优化算法和混沌算法相结合,既摆脱了算法搜索后期易陷入局部极值点的缺点,同时又保持了前期搜索的快速性,最后通过4个测试函数将该算法与基本粒子群算法进行仿真对比,比较结果表明基于混沌搜索的混和粒子群优化算法在收敛性和稳定性等方面明显优于基本粒子群优化算法.  相似文献   

6.
基于改进粒子群算法的输电网扩展规划   总被引:2,自引:0,他引:2  
针对标准粒子群(SPSO)算法易收敛到局部最优的缺点,采用了一种改进的粒子速度更新公式,即在SPSO算法速度更新公式的基础上,加入一个平均极值项,使得各粒子能参考其它同伴的信息;此外在算法迭代过程中加入变异操作,适时初始化失活粒子的位置和速度来保持种群多样性.在输电网扩展规划中的应用结果表明,上述两个操作可以提高PSO算法的收敛精度,使算法最终寻找到全局最优解,从而证明了改进粒子群(IPSO)算法的有效性.  相似文献   

7.
针对粒子群优化算法(PSO)易于陷入局部最优解并存在早熟收敛的问题,利用禁忌搜索算法较强的“爬山”能力,搜索时能够跳出局部最优解,转向解空间的其他区域的特点,提出了一种新的基于禁忌搜索(TS)的混合粒子群优化算法(TS—PSO),并选用两个函数进行测试.结果表明,TS—PSO比其他改进粒子群算法更能提高收敛速度,获得全局最优解.  相似文献   

8.
基于混沌搜索的混和粒子群优化算法   总被引:1,自引:0,他引:1  
所提出的算法将粒子群优化算法和混沌算法相结合,既摆脱了算法搜索后期易陷入局部极值点的缺点,同时又保持了前期搜索的快速性.最后通过4个测试函数将该算法与基本粒子群算法进行仿真对比,比较结果表明基于混沌搜索的混和粒子群优化算法在收敛性和稳定性等方面明显优于基本粒子群优化算法.  相似文献   

9.
一种改进的粒子群优化算法及其应用   总被引:1,自引:0,他引:1  
介绍了粒子群优化算法及其原理,针对其后期容易陷入局部极值的缺陷,提出了一种改进粒子群算法.改进算法采用全局最优粒子变异策略和部分粒子群部分维初始化策略.通过将其应用于(N M)容错系统模型的实例,对改进算法的性能进行了分析,结果表明,改进算法的搜索效率和精度均优于一般的粒子群算法,同时具有较好的收敛稳定性.  相似文献   

10.
粒子群优化粒子滤波算法能有效改善粒子退化问题,但其适应度函数受量测噪声方差影响较大,限制了滤波精度的提高.为此,提出了一种基于粒子群优化的粒子滤波改进算法.该算法给出一种新的适应度函数,用当前状态估计值与各粒子状态的差值大小作为评价标准,使得最终优化粒子受噪声方差影响减小,在量测模型精度高的场合中提高了滤波精度.理论分析及仿真结果表明,本文所提算法的滤波性能优于标准粒子滤波与粒子群优化粒子滤波算法.  相似文献   

11.
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.  相似文献   

12.
In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency was established, and then, a new Tabu search and particle swarm hybrid optimizing algorithm was proposed to find solutions. While actual data of energy demand and distribution in China were selected for analysis, the economic critical value in comparison between the long-distance coal transfer and electric power transmission was gained. Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methods that are based on regional price differences, freight rates and annual cost with the proposed method, the result indicates that the economic efficiency of the energy transfer can be enhanced by 3.14%, 5.78% and 6.01%, respectively.  相似文献   

13.
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.  相似文献   

14.
一种改进的小生境微粒群算法   总被引:7,自引:0,他引:7  
在微粒群算法中引入“基于密度”的聚类算法,构建出一种改进的小生境微粒群算法.该算法组合了两种方法来实现小生境的思想:第一,采用多种群策略,初始化产生一个没有子微粒群区分的主微粒群D0后,在对D0迭代执行lbestPSO算法的同时,允许其中动态产生不相同的子微粒群Di(i≥1);第二,子微粒群的产生采用一种“基于密度”的聚类算法,如果两个个体之间的距离小于一个给定的极值σdist,则将这两个个体联系起来归入一个聚类簇,当聚类簇中的个体数目达到规定的子微粒群最小规模时形成一个小生境.用这种算法能够产生大小和形状不同的小生境,与生物学中地理小生境具有多种形状的事实相符合,也克服了NichePSO算法只能以某一微粒为中心产生圆形小生境的不足.对3个常用的基本测试函数的测试实验表明,这种改进的小生境微粒群算法在多峰函数寻优中性能优于标准PSO和NichePSO.  相似文献   

15.
针对水系统集成优化问题,采用4种粒子群算法进行求解,并对算法进行了改进。通过算例分析了粒子群算法用于水系统优化时的计算特性。研究表明:在水系统集成优化时,基于混沌局部搜索的粒子群算法较适于该问题的计算。  相似文献   

16.
为了扩大粒子群优化算法的应用范围和增强它的影响力,从软件重用的角度出发,考虑到算法流程的共性和个性,设计了一种基于策略模式的粒子群优化算法平台,此平台包含了基本的粒子群优化算法和经典的改进算法,可以解决连续优化和二进制组合优化问题.一系列的粒子群优化算法和优化问题被分别封装到相应的算法策略类和问题策略类中,这些类继承自一个具有统一接口的抽象基类.因此,该平台非常适合于粒子群优化算法的理论和应用研究,且易于维护和扩充.  相似文献   

17.
求解调度问题的粒子群算法编码方法研究   总被引:1,自引:0,他引:1  
利用粒子群算法求解调度问题的关键是建立有效的粒子编码结构。介绍了作业车间、流水车间和并行机调度等3类典型调度问题的特点,阐述了求解调度问题的粒子群算法结构,指出设计粒子群算法编码方法需要考虑的3个关键问题。提出3种求解不同调度问题的粒子群算法编码方法,并从生成调度解的可行性和有效性、粒子群计算模型的适用性和解码过程的复杂性等几个方面对粒子编码方法进行分析。以作业车间调度问题为例,验证了所提粒子编码方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号