首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the influence of transportation stress and temperament on shedding of Escherichia coli O157:H7, cattle (n=150) were classified at various stages of production as Excitable, Intermediate or Calm based on a variety of disposition scores. Presence of E. coli O157:H7 was determined by rectal swabs from live animals and from colons collected postmortem. Percentage of cattle shedding E. coli O157:H7 at arrival at the feedlot was approximately equal among temperament groups. Before shipment to the processing facility, a higher (P=0.03) proportion of cattle from the Calm group shed E. coli O157:H7 compared to the other temperament groups. When pooled across all sampling periods, cattle from the Calm group had a greater percentage test positive for E. coli O157:H7. Neither the acute stressor of transportation nor a more excitable temperament led to increased shedding of E. coli O157:H7 in cattle.  相似文献   

2.
A 2-year study was conducted during the summer months (May to September) to test the effectiveness of feeding Lactobacillus acidophilus strain NP51 on the proportion of cattle shedding Escherichia coli O157:H7 in the feces and evaluate the effect of the treatment on finishing performance. Steers (n = 448) were assigned randomly to pens, and pens of cattle were assigned randomly to NP51 supplementation or no supplementation (control). NP51 products were mixed with water and applied as the feed was mixed daily in treatment-designated trucks at the rate of 10(9) CFU per steer. Fecal samples were collected (n = 3,360) from the rectum from each animal every 3 weeks, and E. coli O157:H7 was isolated by standard procedures, using selective enrichment, immunomagnetic separation, and PCR confirmation. The outcome variable was the recovery of E. coli O157:H7 from feces, and was modeled using logistic regression accounting for year, repeated measures of pens of cattle, and block. No significant differences were detected for gain, intakes, or feed efficiency of control or NP51-fed steers. The probability for cattle to shed E. coli O157:H7 varied significantly between 2002 and 2003 (P = 0.004). In 2002 and 2003, the probability for NP51-treated steers to shed E. coli O157:H7 over the test periods was 13 and 21%, respectively, compared with 21 and 28% among controls. Over the 2 years, NP51-treated steers were 35% less likely to shed E. coli O157: H7 than were steers in untreated pens (odds ratio = 0.58, P = 0.008). This study is consistent with previous reports that feeding NP51 is effective in reducing E. coli O157:H7 fecal shedding in feedlot cattle.  相似文献   

3.
The effect of direct-fed microbials (DFM) on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle was evaluated in a clinical trial involving 138 feedlot steers. Following standard laboratory methods, fecal samples collected from steers were evaluated for change in the detectable levels of E. coli O157:H7 and Salmonella shed in feces after DFM treatment. Sampling of steers was carried out every 3 weeks for 84 days. A significant reduction (32%) in fecal shedding of E. coli O157:H7 (P < 0.001), but not Salmonella (P = 0.24), was observed among the treatment steers compared with the control group during finishing. The probability of recovery of E. coli O157:H7 from the feces of treated and control steers was 34.0 and 66.0%, respectively. Steers placed on DFM supplement were almost three times less likely to shed E. coli O157:H7 (odds ratio, 0.36; 95% confidence interval, 0.25 to 0.53; P < 0.001) in their feces as opposed to their control counterparts. The probability of recovery of Salmonella from the feces of the control (14.0%) and the treated (11.3%) steers was similar. However, the DFM significantly reduced probability of new infections with Salmonella among DFM-treated cattle compared with controls (nontreated ones). It appears that DFM as applied in our study are capable of significantly reducing fecal shedding of E. coli O157:H7 in naturally infected cattle but not Salmonella. The factors responsible for the observed difference in the effects of DFM on E. coli O157:H7 and Salmonella warrants further investigation.  相似文献   

4.
Effective preharvest control measures for Escherichia coli O157:H7 in cattle may significantly reduce the incidence of human disease caused by this organism. The prevalence and magnitude of fecal E. coli O157:H7 excretion was evaluated in 15 pens (300 to 500 cattle per pen) of commercial feedlot cattle fed a barley-based finishing ration and compared with that in 15 pens of cattle fed a corn-based ration. Average E. coli O157:H7 prevalence was 2.4% in barley-fed cattle and 1.3% in the corn-fed cattle (P < 0.05), and average magnitude of fecal E. coli O157:H7 excretion was 3.3 log CFU/g in the barley-fed cattle and 3.0 log CFU/g in the corn-fed cattle (P < 0.01). Corn-fed cattle had lower average fecal pH values (5.85) than did barley-fed cattle (6.51) (P < 0.01), and the average total generic fecal E. coli concentration in this group of animals (6.24 log CFU/g) was greater than that in the barley-fed cattle (5.55 log CFU/g) (P < 0.01). Specific feed ingredients may impact the frequency and magnitude of fecal excretion of E. coli O157:H7 by cattle.  相似文献   

5.
Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157:H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.  相似文献   

6.
This study was designed to describe the percentage of cattle shedding Escherichia coli O157:H7 in Midwestern U.S. feedlots and to discover relationships between the point prevalence of cattle shedding the organism and the characteristics of those cattle or the conditions of their pens. Cattle from 29 pens of five Midwestern feedlots were each sampled once between June and September 1999. Feces were collected from the rectum of each animal in each pen. Concurrently, samples of water were collected from the water tank, and partially consumed feed was collected from the feedbunk of each pen. Characteristics of the cattle and conditions of each pen that might have affected the prevalence of cattle shedding E. coli O157:H7 were recorded. These factors included the number of cattle; the number of days on feed; and the average body weight, class, and sex of the cattle. In addition, the temperature and pH of the tank water were determined, and the cleanliness of the tank water and the condition of the pen floor were subjectively assessed. The samples of feces, feed, and water were tested for the presence of E. coli O157:H7. E. coli O157:H7 was isolated from the feces of 719 of 3,162 cattle tested (23%), including at least one animal from each of the 29 pens. The percentage of cattle in a pen shedding E. coli O157:H7 did not differ between feedyards, but it did vary widely within feedyards. A higher prevalence of cattle shed E. coli O157:H7 from muddy pen conditions than cattle from pens in normal condition. The results of this study suggest that E. coli O157:H7 should be considered common to groups of feedlot cattle housed together in pens and that the condition of the pen floor may influence the prevalence of cattle shedding the organism.  相似文献   

7.
Three experiments were conducted to evaluate the influence of vitamin D on fecal shedding of Escherichia coli O157:H7 in cattle. In the first experiment, two groups of cattle (beef and dairy) were assigned to a control treatment or to receive 0.5 × 10(6) IU vitamin D per day via oral bolus for 10 days. Fecal samples were collected before and throughout the dosing period for culture of E. coli O157:H7. No differences were observed for fecal shedding of E. coli O157:H7 among treatments for either beef or dairy animals. Serum concentrations of vitamin D were markedly higher (P < 0.0001) in treated beef cattle but only tended to be higher (P = 0.09) in the dairy cattle. In the second experiment, three successive vitamin D dosages (2,400, 4,800, and 9,600 IU/day; 14 days each) were administered to 14 dairy steers (7 steers served as controls), fecal samples were collected daily, and serum samples were collected weekly throughout the 42-day experimental period. No significant differences in fecal prevalence or serum vitamin D concentrations were observed for any of the vitamin D dosages. A third experiment sampled feedlot cattle (winter and summer) to determine whether serum vitamin D concentrations were correlated with fecal shedding of E. coli O157:H7. A fecal sample and a blood sample were obtained in each season from 60 randomly selected animals (total of 120 fecal samples and 120 corresponding blood samples). As expected, season was highly correlated (r = 0.66) with serum vitamin D concentration with higher concentrations (P < 0.01) observed in the summer. E. coli O157:H7 prevalence (percentage of positive samples) was not highly correlated (r = 0.16) with season, although the correlation tended to be significant (P = 0.08). The proportion of cattle shedding E. coli O157:H7 was 16.7 and 6.7% for the summer and winter collections, respectively. Results of this research do not support a correlation between vitamin D intake and E. coli O157:H7 shedding in cattle.  相似文献   

8.
Feedlot pen soil is a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM). A feedlot pen was identified in which naturally occurring E. coli O157:H7 was prevalent and evenly distributed in the FSM. Forty plots 3 by 3 m were randomly assigned such that five plots of each of the solarization times of 0, 1, 2, 3, 4, 6, 8, and 10 weeks were examined. Temperature loggers were placed 7.5 cm below the surface of each plot, and plots to be solarized were covered with clear 6-mil polyethylene. At each sampling time, five FSM samples were collected from each of five solarized and five unsolarized plots. E. coli concentrations and E. coli O157:H7 presence by immunomagnetic separation and plating were determined for each FSM sample. Initial percentages of E. coli O157:H7-positive samples in control and solarized FSM were 84 and 80%, respectively, and did not differ (P > 0.05). E. coli O157:H7 was no longer detectable by 8 weeks of solarization, but was still detected in unsolarized FSM at 10 weeks. The average initial concentration of E. coli in FSM was 5.56 log CFU/g and did not differ between treatments (P > 0.05). There was a 2.0-log decrease of E. coli after 1 week of solarization, and a >3.0-log reduction of E. coli by week 6 of solarization (P, 0.05). E. coli levels remained unchanged in unsolarized FSM (P > 0.05). Daily peak FSM temperatures were on average 8.7°C higher for solarized FSM compared with unsolarized FSM, and reached temperatures as high as 57°C. Because soil solarization reduces E. coli O157:H7, this technique may be useful for reduction of persistence and transmission of this pathogen in cattle production, in addition to remediation of E. coli O157:H7-contaminated soil used to grow food crops.  相似文献   

9.
The effects of weaning and transport on fecal shedding of Escherichia coli and on E. coli O157:H7 were investigated using 80 Angus and 94 Charolais range steer calves blocked by breed and assigned to four treatments. The calves were or were not preconditioned before transport on commercial cattle liner to the feedlot via long (15 h) or short (3 h) hauling duration, yielding preconditioned long haul (P-L; n = 44), preconditioned short haul (P-S; n = 44), nonpreconditioned long haul (NP-L; n = 43), and nonpreconditioned short haul (NP-S; n = 43). Preconditioned calves were vaccinated and weaned 29 and 13 days, respectively, before transport. Nonpreconditioned calves were weaned 1 day before long or short hauling, penned for 24 h and hauled again for 2 h, and vaccinated on arrival at the feedlot. Fecal samples were collected from calves while on pasture, at weaning, at loading for transport, on arrival at the feedlot, twice in the first week, and on days 7, 14, 21, and 28 for enumeration of total E. coli (biotype 1) and detection of E. coli O157:H7. No calves were positive for E. coli O157:H7 before transport. Following transport, more (P < 0.005) NP-L calves (6 of 43) tested positive for E. coli O157:H7 than did P-L (1 of 44), NP-S (1 of 43), or P-S (0 of 44) calves, and on days 0, 1, 7, and 21, their levels of shedding of E. coli were higher (P < 0.005). The calves' susceptibility to infection from the environment (possibly the holding facilities or feedlot pens) was likely elevated by the stresses of weaning, transport, and relocation. Lack of preconditioning and long periods of transport (NP-L) increased fecal shedding of E. coli and E. coli O157:H7. Preconditioning may serve to reduce E. coli O157:H7 shedding by range calves on arrival at the feedlot.  相似文献   

10.
The proportion of fecal samples culture-positive for Escherichia coli O157:H7 was determined for samples collected from 296 beef cows on pasture in a single Florida herd in October, November, and December 2001. The overall proportion of samples that cultured positive was 0.03. The proportion of cows that were culture-positive on at least one occasion was 0.091. No effect of pregnancy status or nutritional regimen on the proportion of culture-positive samples for E. coli O157:H7 was detected. We detected a breed effect on the shedding of E. coli O157, with Romosinuano cows having a lower (P < 0.01) proportion of samples culture-positive than Angus or Brahman cows. This difference might have resulted from the presence of confounding variables; however, it also might represent evidence of breed-to-breed genetic variation in E. coli O157 shedding. Further research is warranted to evaluate breed as a possible risk factor for shedding of this important foodborne pathogen. Further substantiated findings could indicate that breed is a cow-calf-level critical control point of E. coli O157:H7.  相似文献   

11.
Cattle are an asymptomatic reservoir of Escherichia coli O157:H7, but the bacterial colonization and shedding patterns are poorly understood. The prevalence and shedding of this human pathogen have been reported to be seasonal with rates typically increasing during warm months. The objectives of this study were (i) to assess the prevalence of E. coli O157:H7 in feces of feedlot cattle in Kansas during summer, fall, and winter months, and (ii) to characterize E. coli O157:H7 by screening for virulence factors. Of 891 fecal samples collected, 82 (9.2%) were positive for E. coli O157:H7. No significant differences in prevalence were detected among summer, fall, and winter months. The highest monthly prevalence (18.1%) was detected in February. All tested isolates were positive for stx2 (Shiga toxin 2) and eaeA (intimin) genes; 14 isolates (12.8%) also carried stx1. Our results indicate the prevalence of E. coli O157:H7 in beef cattle feces is not necessarily season dependent.  相似文献   

12.
Preharvest intervention strategies to reduce Escherichia coli O157:H7 in cattle have been sought as a means to reduce human foodborne illness. A blinded clinical trial was conducted to test the effect of a vaccine product on the probability that feedlot steers, under conditions of natural exposure, shed E. coli O157:H7 in feces, are colonized by this organism in the terminal rectum, or develop a humoral response to the respective antigens. Steers (n = 288) were assigned randomly to 36 pens (eight head per pen), and pens were randomized to vaccination treatment in a balanced fashion within six dietary treatments of an unrelated nutrition study. Treatments included vaccination or placebo (three doses at 3-week intervals). Fecal samples for culture (n = 1,410) were collected from the rectum of each steer on pretreatment day 0 and posttreatment days 14, 28, 42, and 56. Terminal rectum mucosal (TRM) cells were aseptically collected for culture at harvest (day 57 posttreatment) by scraping the mucosa 3.0 to 5.5 cm proximal to the rectoanal junction. E. coli O157:H7 was isolated and identified with selective enrichment, immunomagnetic separation, and PCR confirmation. Vaccinated cattle were 98.3% less likely to be colonized by E. coli O157:H7 in TRM cells (odds ratio = 0.014, P < 0.0001). Diet was also associated with the probability of cattle being colonized (P = 0.04). Vaccinated cattle demonstrated significant humoral responses to Tir and O157 lipopolysaccharide. These results provide evidence that this vaccine product reduces E. coli O157:H7 colonization of the terminal rectum of feedlot beef cattle under conditions of natural exposure, a first step in its evaluation as an effective intervention for food and environmental safety.  相似文献   

13.
Fecal shedding of Escherichia coli O157:H7, the prevalence of Escherichia coli O157:H7 in pens and on carcasses and hides, and cattle performance as a result of daily dietary supplementation with Lactobacillus-based direct-fed microbials (DFMs) were evaluated in a feeding trial involving 180 beef steers. Steers were evaluated for shedding of E. coli O157:H7 by an immunomagnetic separation technique on arrival at the feedlot, just before treatment with the DFMs, and every 14 days thereafter until slaughter. Composite pen fecal samples were collected every 14 days (alternating weeks with animal testing), and prevalence on hides and carcasses at slaughter was also evaluated. Feedlot performance (body weight gain and feed intake) was measured for the period during which the DFMs were fed. Gain efficiency was calculated as the ratio of weight gain to feed intake. Lactobacillus acidophilus NPC 747 decreased (P < 0.01) the shedding of E. coli O157:H7 in the feces of individual cattle during the feeding period. E. coli O157:H7 was approximately twice as likely to be detected in control animal samples as in samples from animals receiving L. acidophilus NPC 747. In addition, DFM supplementation decreased (P < 0.05) the number of E. coli O157:H7-positive hide samples at harvest and the number of pens testing positive for the pathogen. Body weight gains (on a live or carcass basis) and feed intakes during the DFM supplementation period did not differ among treatments. Gain efficiencies on a live-weight basis did not differ among treatments, but carcass-based gain/feed ratios tended (P < 0.06) to be better for animals receiving the two DFM treatments than for control animals. The results of this study suggest that the feeding of a Lactobacillus-based DFM to cattle will decrease, but not eliminate, fecal shedding of E. coli O157:H7, as well as contamination on hides, without detrimental effects on performance.  相似文献   

14.
Ruminant livestock, particularly cattle, is considered the primary reservoir of Escherichia coli O157:H7. This study examines the transmission of E. coli O157:H7 within groups of cattle during winter housing. Holstein Friesian steers were grouped in six pens of five animals. An animal inoculated with and proven to be shedding a marked strain of E. coli O157: H7 was introduced into each pen. Fecal (rectal swabs) and hide samples (900 cm2 from the right rump) were taken from the 36 animals throughout the study. Water, feed, and gate or partition samples from each pen were also examined. Within 24 h of introducing the inoculated animals into the pens, samples collected from the drinking water, pen barriers, and animal hides were positive for the pathogen. Within 48 h, the hides of 20 (66%) of 30 cohort animals from the six pens were contaminated with E. coli O157:H7. The first positive fecal samples from the noninoculated cohort animals were detected 3 days after the introduction of the inoculated steers. During the 23 days of the study, 15 of 30 cohort animals shed the marked E. coli O157:H7 strain in their feces on at least one occasion. Animal behavior in the pens was monitored during a 12-h period using closed circuit television cameras. The camera footage showed an average of 13 instances of animal grooming in each pen per hour. The study suggests that transmission of E. coli O157:H7 between animals may occur following ingestion of the pathogen at low levels and that animal hide may be an important source of transmission.  相似文献   

15.
Two sampling methods (rectoanal swabs and rectal fecal grabs) were compared for their recovery of Escherichia coli O157:H7 from feedlot cattle. Samples were collected from 144 steers four times during the finishing period by swabbing the rectoanal mucosa with cotton swabs and immediately obtaining feces from the rectum of each individual steer. The number of steers with detectable E. coli O157:H7 increased from 2 of 144 (1.4%) cattle on arrival at the feedlot to 10 of 144 (6.9%) after 1 month, 76 of 143 (52.8%) after 7 months, and 30 of 143 (20.8%) at the last sampling time before slaughter. Wilcoxon signed-rank tests indicated that the two sampling methods gave different results for sampling times 3 and 4 (P < 0.05) but not for sampling time 2 (P = 0.16). Agreement between the two sampling methods was poor (kappa < 0.2) for three of the four sampling times and moderate (kappa = 0.6) for one sampling time, an indication that in this study rectoanal swabs usually were less sensitive than rectal fecal grabs for detection of E. coli O157:H7 in cattle. Overall, the herd of origin was not significantly associated with E. coli O157:H7 results, but the weight of the steers was. Further investigation is needed to determine the effects of potential confounding factors (e.g., size and type of swab, consistency of feces, site sampled, and swabbing technique) that might influence the sensitivity of swabs in recovering E. coli O157:H7 from the rectoanal mucosa of cattle.  相似文献   

16.
Three groups of six yearling steers (three rumen fistulated plus three nonfistulated) fed one of three different grain diets (85% cracked corn, 15% whole cottonseed and 70% barley, or 85% barley) were inoculated with 10(10) CFU of Escherichia coli O157:H7 strain 3081, and the presence of the inoculated strain was followed in the rumen fluid and feces for a 10-week period. E. coli O157:H7 was rapidly eliminated from the rumen of the animals on all three diets but persisted in the feces of some animals up to 67 days after inoculation, suggesting that the bovine hindgut is the site of E. coli O157:H7 persistence. A significant difference existed in the levels of E. coli O157:H7 shed by the animals among diets on days 5, 7, 49, and 63 after inoculation (P < 0.05). No significant difference was found between the levels shed among diets on days 9 through 42 and on day 67 (P > 0.05). The number of animals that were culture positive for E. coli O157:H7 strain 3081 during the 10-week period was significantly higher for the barley fed group (72 of 114 samplings) as opposed to the corn fed group (44 of 114 samplings) (P < 0.005) and the cottonseed and barley fed group (57 of 114 samplings) (P < 0.05). The fecal pH of the animals fed the corn diet was significantly lower (P < 0.05) than the fecal pH of the animals fed the cottonseed and barley and barley diets, likely resulting in a less suitable environment for E. coli O157:H7 in the hindgut of the corn fed animals. E. coli O157:H7 strain 3081 was present in 3 of 30 (corn, 1 of 10; cottonseed, 1 of 10; barley, 1 of 10) animal drinking water samples, 3 of 30 (corn, 1 of 10; cottonseed, 0 of 10; barley, 2 of 10) water trough biofilm swabs, 5 of 30 (corn, 0 of 10; cottonseed, 2 of 10; barley, 3 of 10) feed samples, and 30 of 30 manure samples taken from the pens during the entire experimental period. Mouth swabs of the steers were also culture positive for E. coli O157:H7 strain 3081 in 30 of 180 samples (corn, 7 of 60; cottonseed, 4 of 60; barley, 19 of 60) taken during the 10-week period. Minimizing environmental dissemination of E. coli O157:H7 in conjunction with diet modification may reduce numbers of E. coli O157:H7-positive cattle.  相似文献   

17.
On-farm methods of monitoring Escherichia coli O157:H7 were assessed in 30 experimentally inoculated steers housed in four pens over a 12-week period and in 202,878 naturally colonized feedlot cattle housed in 1,160 pens on four commercial Alberta feedlots over a 1-year period. In the challenge study, yearling steers were experimentally inoculated with 10(10) CFU of a four-strain mixture of nalidixic acid-resistant E. coli O157:H7. After inoculation, shedding of E. coli O157:H7 was monitored weekly by collecting rectal fecal samples (FEC), oral swabs (ORL), pooled fecal pats (PAT), manila ropes (ROP) orally accessed for 4 h, feed samples, water, and water bowl interface. Collection of FEC from all animals per pen provided superior isolation (P < 0.01) of E. coli O157:H7 compared with other methods, although labor and animal restraint requirements for fecal sample collection were high. When one sample was collected per pen of animals, E. coli O157:H7 was more likely to be detected from the ROP than from the FEC, PAT, or ORL (P < 0.001). In the commercial feedlot study, samples were limited to ROP and PAT, and E. coli O157:H7 was isolated in 18.8% of PAT and 6.8% of ROP samples. However, for animals that had been resident in the feedlot pen for at least 1 month, isolation of E. coli O157:H7 from ROP was not different from that from PAT (P = 0.35). Pens of animals on feed for <30 days were six times more likely to shed E. coli O157:H7 than were animals on feed for >30 days. However, change in diet did not affect shedding of the organism (P > 0.23) provided that animals had acclimated to the feedlot for 1 month or longer. Findings from this study indicate the importance of introduction of mitigation strategies early in the feeding period to reduce transference and the degree to which E. coli O157:H7 is shed into the environment.  相似文献   

18.
Twelve cattle trucks were analyzed for the presence of Escherichia coli O157:H7. Three of them had been washed prior to arrival, and the others had not. Seventy-five percent of the trailers were positive for the presence of this foodborne pathogen. A total of 54 cultures were isolated and identified as E. coli O157:H7, all from the trucks that had not been cleaned. Most of the cultures (96.4%) produced Shiga-like toxin (verotoxin). No E. coli O157:H7 was detected in cattle trucks that were cleaned before arrival at the cattle pens. The incidence of E. coli O157:H7 in transport trailers increases the potential risk of contamination of cattle and transmission from farms to feedlots and to packing plants. This contamination increases the potential of contamination of meat during harvest and the risk of foodborne illnesses.  相似文献   

19.
In this study, five abattoirs in Istanbul were visited between January 2000 and April 2001. During these visits, 330 cattle were selected by a systematic sampling method. Cattle were examined clinically and breed, age, and sex were recorded. Rectal swabs were taken immediately after slaughter. Immunomagnetic separation was performed, and sorbitol-negative colonies were selected on sorbitol MacConkey agar with cefixime and tellurite (CT-SMAC agar). These colonies were checked for 4-methylenebelliferyl-beta-D-glucuronide, indol, rhamnose, and urease activity and motility. Serotypes of bacteria were determined by using antisera specific for Escherichia coli O157 and H7. All cattle selected were clinically healthy. Of 88 sorbitol-negative colonies selected on CT-SMAC agar, isolates from only 14 (4.2%) cattle reacted with anti-O157, and 13 of these isolates also reacted with anti-H7. E. coli O157:H7 was isolated from all breeds, but the numbers of isolates were largest for Holstein and Swiss Brown cows. E. coli O157:H7 was most frequently isolated from 2-year-old cattle. Similarly, it was most frequently isolated from male cattle. E. coli O157:H7 was isolated from cattle slaughtered in four of the five abattoirs studied.  相似文献   

20.
Escherichia coli O157:H7 causes foodborne illness in humans; cattle are considered a primary reservoir for the organism, and transmission is often through contaminated food products or water. The objective of this study was to determine the genetic diversity of E. coli O157:H7 within a single individual bovine fecal sample based on pulsed-field gel electrophoresis (PFGE) typing. Fecal samples (n=601) were collected from dairy and beef cattle at three separate facilities, and E. coli O157:H7 was isolated by enrichment, immunomagnetic separation, and plating on selective medium. The prevalence of E. coli O157:H7 was 46 (7.7%) of 601. From each positive fecal sample, up to 10 putative colonies were tested, and isolates from samples with at least seven positive colonies were subtyped using PFGE and tested for six major virulence genes by multiplex PCR. A total of 254 E. coli O157:H7 isolates from 27 samples met these criteria and were included in PFGE analysis. Fifteen PFGE subtypes (<100% Dice similarity) were detected among the 254 isolates, and there were no common subtypes between the three locations. Seven (26%) of 27 fecal samples had E. coli O157:H7 isolates with different PFGE subtypes (mean=2.1) within the same sample. The virulence gene profiles of different isolates from the same sample were always identical, regardless of the number of PFGE types. The results of this study suggest that determining the PFGE pattern of a single isolate from a bovine sample may not be sufficient when comparing isolates from feces, hides, or carcasses, because multiple PFGE subtypes are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号