首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
利用ANSYS建立了环块样件接触的实体模型,将齿轮接触问题进行了等效简化;根据ANSYS接触问题的有限元分析方法与仿生学表面形态优化设计技术,在环块样件的接触面区域形成了九种不同分布的凹坑型仿生表面微观形态,完成了光滑环块样件与九种凹坑型仿生形态环块样件接触问题的三维有限元数值模拟,进行了光滑与凹坑型仿生形态环块样件接触应力的对比分析,得出:仿生形态环块样件接触区域接触应力峰值高于光滑样件,但仿生形态环块样件接触区域的平均接触应力值低于光滑形态。  相似文献   

2.
根据蚊子等昆虫刺吸式口器的结构形态,采用激光雕刻与辊压成型等表面加工技术对普通注射器针头进行了仿生非光滑表面结构形态的加工。运用试验优化技术,找出了针头表面几何非光滑结构单元形态、结构单元深度、间距及直径(宽度)对注射时针头壁与皮肤间摩擦阻力的影响规律,分析了影响因素的主次和最优水平。结果表明,合理的仿生结构单元形态和分布可使仿生注射器针头减阻率达44.5%。该研究成果为仿生无痛注射器研究及其实际应用提供了理论基础。  相似文献   

3.
根据蚊子等昆虫刺吸式口器的结构形态,采用激光雕刻与辊压成型等表面加工技术对普通注射器针头进行了仿生非光滑表面结构形态的加工。运用试验优化技术,找出了针头表面几何非光滑结构单元形态、结构单元深度、间距及直径(宽度)对注射时针头壁与皮肤间摩擦阻力的影响规律,分析了影响因素的主次和最优水平。结果表明,合理的仿生结构单元形态和分布可使仿生注射器针头减阻率达44.5%。该研究成果为仿生无痛注射器研究及其实际应用提供了理论基础。  相似文献   

4.
为了提高吸盘的吸附性能,基于水蛭吸盘表面存在的凹坑形态,运用仿生学原理,在常规吸盘表面设计凹坑形态,使吸盘工作表面存在多个小型吸盘,提高吸盘的吸附性能。运用部分正交多项式回归分析,探究凹坑形态的直径、单排凹坑数量及排间距对吸盘吸附力的影响。试验表明,不同凹坑的形态参数对吸盘吸附力具有不同的影响效果,当凹坑直径为1.5 mm、单排凹坑的数量为40个及排间距为4 mm时,仿生吸盘在基底表面的吸附力为49.54 N,相对于标准吸盘在基底表面的吸附力提高49.21%。建立设计因素与评价指标间的数学回归模型,确定对吸盘吸附力影响的显著性主次顺序为排间距、凹坑直径、单排凹坑数量。仿真分析表明,工作表面存在的凹坑形态改变了吸附时吸盘表面接触压力及摩擦应力的分布,并且仿生吸盘工作表面的摩擦应力和接触压力均大于标准吸盘,增大了仿生吸盘在基底表面的吸附力。  相似文献   

5.
仿生非光滑用于旋成体减阻的试验研究   总被引:4,自引:4,他引:4  
基于仿生非光滑表面具有减粘降阻特性的基本思想,通过仿生非光滑表面控制旋成体附壁区的边界层结构来减小旋成体的阻力。利用6因素3水平的正交试验,考察了对旋成体阻力影响较大的6个因素。对具有不同尺寸的凸包、凹坑以及棱纹等形态的非光滑旋成体及光滑旋成体进行了低、亚、超音速风洞试验,并将减阻率作为试验指标。对减阻率的分析表明,三种非光滑表面均能起到减小旋成体阻力的作用,总阻力最大减阻效果为5%左右。用极差法进行正交试验设计分析,得到了影响旋成体阻力因素的主次顺序及最优水平,并探讨了不同仿生表面对旋成体粘性前部阻力(包括表面摩擦阻力及激波阻力等)及底部阻力的不同影响。  相似文献   

6.
离心式水泵仿生非光滑增效的试验研究   总被引:1,自引:1,他引:1  
基于仿生非光滑技术,通过改变离心式水泵中液体的流动结构降低固液界面的阻力,研究了水泵的增效问题。并设计了试验系统,采用L9(34)正交试验,以离心式水泵效率为试验指标,进行了离心式水泵的流量、扬程、电压和电流的测量。对比试验表明,在离心式水泵的有效工作流量范围内,某些仿生改形表面的模型具有十分明显的效果,效率提高最大为3.45%,最大增效率为6.81%。并优化出在两个流量段的主次因素和最优水平,为仿生非光滑技术在离心式水泵中应用的进一步研究提供了前期基础。  相似文献   

7.
以人体足部关节为仿生模本,研制了具有仿生距下关节(矢状面内关节轴倾角为45°)和跖趾关节(添加脚趾)的新型完全被动步行机,并实现了稳态行走。通过单因素试验确定了步行机的最佳高度;采用多因素混合正交试验设计,分析了步行机高度、有无足趾、腿间距3个因素对步行机行走性能的影响。结果表明:研究范围内,对步行机行走性能(稳定行走距离和行走速度)影响最大的因素为腿间距;足部有、无脚趾对行走速度具有次要影响,而步行机高度则对行走最大距离具有次要影响。  相似文献   

8.
针对气动灭火炮炮弹发射过程中弹体橡胶密封圈与炮管之间摩擦阻力大的问题,将仿生凹坑表面减阻技术应用于弹体橡胶密封圈上。建立气动灭火炮橡胶密封圈仿生凹坑减阻运动模型,采用数值模拟方法,研究弹体橡胶密封圈仿生凹坑特征直径及弹体速度对橡胶密封圈与炮管之间摩擦阻力的影响。结果表明:在相同的弹体速度下,当灭火炮弹体橡胶密封圈仿生凹坑特征直径为2mm时,减阻效果最佳,凹坑特征直径为4mm时,减阻效果最差;最大减阻率为17.191%,最小减阻率为3.158%。仿生凹坑中存储的润滑油在弹体运动时,润滑油产生拖拽泼洒而溢流到炮管内壁,对炮管内壁和橡胶密封圈起到润滑作用,达到减小摩擦阻力以及提高炮弹发射速度的目的。  相似文献   

9.
利用扫描电镜观察土壤动物的典型体表形态,并提取其仿生信息。利用逆向制造技术和仿生改形技术探索了鞋底的黏附问题,并设计了试验系统。以球冠高度h、球冠底面圆半径r、球冠间距d、球冠分布形态σ为试验因素,采用L9(34)正交试验测试了土壤黏附力。对比试验表明:在同等试验条件下,某些仿生改形表面的鞋底具有十分明显的减黏脱附效果,当h=3.0 mm,r=4.0 mm,d=10.0 mm和σ为递增分布形态时,最多可降低黏附力8.27%。  相似文献   

10.
仿生表面形态齿轮的模态分析   总被引:2,自引:1,他引:1  
在Pro/E中建立了高精度的参数化渐开线直齿圆柱齿轮模型,以工程仿生学和有限元理论为基础,运用MSC.Nastran分析了仿生表面形态齿轮的动力学性能。通过对普通齿轮和仿生表面形态齿轮进行模态分析,分别计算出了其前10阶固有频率和振型。结果表明,与普通齿轮相比,仿生表面形态齿轮各阶最大振幅更小,其固有频率明显降低,且趋势更为平稳,有效地改善了齿轮的动态特性,提高了齿轮的可靠性。  相似文献   

11.
为了探讨凹坑形态与纳米碳化硅/镍基复合镀层耦合表面的磨损性能,采用激光技术和电沉积技术制备了由凹坑形态和纳米碳化硅/镍基复合镀层构成的仿生耦合表面,并进行了摩擦和磨损试验。结果表明,仿生耦合表面的磨损性能高于单纯复合镀层的磨损性能;随着磨损载荷的增加和磨损时间的延长,试样表面磨损机制由以塑性磨损为主逐渐转变成以粘着磨损、磨粒磨损为主的磨损机制。  相似文献   

12.
仿生非光滑表面在混合润滑状态下的摩擦性能   总被引:4,自引:2,他引:4  
模仿蚯蚓的非光滑表面形态及其分泌体表液的摩擦行为和作用,利用摩擦试验台对模拟蚯蚓体表形态的凹坑、导角通孔、通孔三种仿生非光滑表面形态进行了滴油混合润滑摩擦试验。试验结果表明,在混合润滑情况下,接近蚯蚓背孔的通孔形仿生非光滑表面结构具有优良的减阻、耐磨效应,并从非光滑形态对润滑状态影响规律及对摩擦界面材料特性影响规律探讨了仿生非光滑形态对摩擦性能的影响机理。  相似文献   

13.
新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验   总被引:3,自引:3,他引:0  
选取新疆岩蜥为典型动物,以形态、结构、材料作为因素设计仿生耦合试样,通过喷砂试验检验耦合试样表面的冲蚀磨损特性。喷砂试验选用粒径为1000μm的Al2O3颗粒为磨料,对LY12硬铝合金与45#钢为基底的仿生耦合试样进行试验。结果表明,在冲蚀时间为180 s,入射角为30°,入射距离为200 mm,空气压力为0.4 MPa条件下,耦合试样耐冲蚀磨损性能较对照试样提高18.7%。耦合试样特征因子最优组合为以LY12硬铝合金为基底材料,非光滑单元形态的形状为圆形凹坑、直径为3 mm,单元间距为6 mm的规则分布,表面涂层(Al2O3+13%TiO2)厚度为100μm。  相似文献   

14.
仿生耦合功能表面应力-应变本构关系   总被引:1,自引:0,他引:1  
采用试验优化设计方法对相同试验条件下凹坑形仿生光滑试样以及具有仿生耦合表面的非光滑试样进行了干摩擦磨损试验对比研究。在相同试验条件下,凹坑形仿生非光滑试样磨损率小于光滑试样,即前者耐磨性较高。在此基础上,作者进行了受压状态下试样表面应力的试验测试和ANSYS有限元计算分析,探讨了非光滑凹坑对试样表面应力-应变分布的影响。结果表明:在受力状态下,仿生非光滑凹坑改善了试样表面的应力分布,使非光滑试样表面凹坑间的区域局部应力明显小于光滑试样表面的应力,即产生了局部低应力区。本文初步提出了非光滑结构的力矩效应和应力缓释效应。  相似文献   

15.
应用激光掩膜精细加工技术,在Cu-Zn合金表面构建了Patankar模型,使合金表面与水的实际接触角由光滑表面的82.5°降低到31.5°,亲水能力提高了62%。研究结果表明,Wenzel模型和Cassis-Baxter模型得到的表面特征参数与实际接触角的变化关系差别较大,并且线性回归存在失真。本文给出的非线性数学模型可以准确地反映表面特征参数与实际接触角的变化关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号