共查询到19条相似文献,搜索用时 62 毫秒
1.
仅利用单一的目标特征进行跟踪是大多数跟踪算法鲁棒性不高的重要原因。提出了一种有效的多特征融合跟踪方法,该方法同时结合了颜色和运动边缘特征,并通过粒子滤波方法合理地进行概率融合。实验结果表明,算法能够在一种特征受到背景干扰导致目标鉴别能力丧失时,其它特征仍能稳定可靠地跟踪目标,算法简单,鲁棒性高,能够有效适用于复杂背景下的目标跟踪。 相似文献
2.
3.
4.
5.
针对粒子滤波中的粒子贫化问题,分析了目前用于增加粒子多样性方法存在的不足,提出了一种新的粒子筛选与处理方法.通过设置筛选区间,保留该区间内的粒子,对区间外的粒子进行移动处理,从而改善粒子分布.仿真结果表明,该方法能够有效缓解粒子贫化问题,提高滤波精度.同时由于有效样本数增加,降低了重采样次数,总体上减少了算法运行时间. 相似文献
6.
7.
为处理机动目标被动跟踪中的非线性非高斯问题,提出了一种基于粒子滤波器的交互多模型(IMM)多观测站跟踪方法。使用转弯率建立了被动跟踪模型,用“蛙跳”处理方式来提高多站被动跟踪问题的可观测性,结合被动跟踪模型,利用非线性粒子滤波方法,对IMM算法进行了改进,提高了对IMM混和密度的近似程度,通过被动跟踪仿真实例,同时使用IMM粒子滤波器(IMM-PF)与IMM扩展卡尔曼滤波器(IMM-EKF)进行跟踪仿真,分析了轨迹跟踪性能,利用均方根误差比较了误差性能。仿真结果表明,与IMM-EKF相比,IMM-PF具有更高的跟踪精度和更快的机动响应速度。 相似文献
8.
为提高粒子滤波视觉目标跟踪算法的实时性与鲁棒性,提出了一种基于多特征融合的自适应性粒子滤波跟踪算法。该算法利用颜色和结构特征表示目标,将两者融合于粒子滤波的框架中,利用融合后的信息计算粒子的权值,以降低算法受目标形变及复杂环境的影响。同时,根据跟踪预测的准确程度动态计算跟踪所需的粒子数目,对采样粒子集进行自适应调整,以提高粒子质量,降低粒子数量,减少算法运算时间。实验结果表明,所提算法对于每帧图像的平均计算时间相对于传统混合跟踪算法缩短了将近一半,而且算法的鲁棒性较强。 相似文献
9.
针对复杂背景下目标被部分遮挡时的稳定跟踪问题,提出一种基于图模型的粒子滤波跟踪方法。该方法将图模型应用于粒子滤波之中。首先,融合颜色和边缘特征建立目标的观测模型,构建粒子滤波框架。然后,选取目标特征区域,将一个目标分成几个部分,每一部分作为图的一个顶点,建立图模型。最后,将图模型应用于粒子滤波,目标跟踪过程中,图模型中每一个部分的状态信息可以传送给其它部分。实验结果表明,当目标被部分遮挡的情况下,该方法能够估计出遮挡部分的状态,实现稳定的跟踪目标。 相似文献
10.
为了能够快速和准确地跟踪运动目标,提出了一种改进的基于Camshift的粒子滤波算法。在粒子滤波框架下,首先对传统目标模型进行改进,提出一种新的融合目标颜色信息和运动信息的模型,以增强目标跟踪的稳健性和准确性;同时为了提高跟踪的效率,将一种改进的Camshift算法嵌入到粒子滤波中,用来重新分配随机粒子样本,使之向目标状态的最大后验概率密度方向移动。实验结果表明,与传统的粒子滤波算法或Camshift算法相比,该方法能有效处理目标快速运动或背景存在强干扰等情况,实现对目标快速和稳健的跟踪。 相似文献
11.
12.
一种实用的数据融合算法 总被引:8,自引:1,他引:8
文章分析了目前一些数据融合算法中对先验信息要求苛刻,定义数据间支持度中门限预先设定对融合结果的不利影响,提出了一种实用的数据融合算法,该算法中定义了一种新的数据间支持度函数,避免了门限预先设定问题。最后,通过数值仿真证明了该算法的有效性。 相似文献
13.
14.
15.
基于量化新息的容积粒子滤波融合目标跟踪算法 总被引:1,自引:0,他引:1
针对现有非线性网络化目标跟踪融合算法存在的精度低和实用性差等不足,以一类带有噪声相关的非线性网络化目标跟踪系统为对象,研究基于测量新息量化策略和容积粒子滤波(Cubature particle filter,CPF)的目标跟踪融合算法. 首先,利用状态方程恒等变换和矩阵相似变换理论解除过程噪声与测量噪声以及测量噪声之间的相关性;其次,各个传感器节点采用自适应策略量化局部测量新息并将其发送到融合中心(Fusion center,FC);随后,在集中式融合框架下采用容积粒子滤波器设计基于测量值扩维的量化融合跟踪算法,进而给出相应的顺序滤波量化融合算法,上述算法可有效解决因自适应量化引起的非高斯问题;最后,通过两个计算机仿真实验验证了所提出跟踪算法的有效性. 相似文献
16.
在分析传统图像均值滤波算法的特性基础上,提出了一种新的均值滤波方法--多窗口均值融合滤波算法.该算法以每一个像素点为中心选取多个不同尺寸的窗口,将各窗口的均值进行融合处理后作为中心点的滤波输出.实验结果表明,本算法对于低信噪比图像具有较好的滤波效果,优于传统的和一些改进的均值滤波算法. 相似文献
17.
基于核函数粒子滤波和多特征自适应融合的目标跟踪 总被引:1,自引:0,他引:1
经典粒子滤波及其改进算法在观测模型与真实情况存在偏差时会导致滤波发散,针对这一问题,提出一种核函数粒子滤波算法.该算法根据目标状态与粒子状态之间的距离,利用核函数产生权值对粒子进行二次加权,根据粒子的二次加权结果进行粒子重采样;以改进的粒子滤波算法为框架,提出了一种自适应多特征融合目标跟踪方法,利用相似性度量动态地评价特征对目标与背景的区分能力,并自适应地计算特征融合权重,以适应目标跟踪过程中目标与背景的变化,提高目标跟踪的鲁棒性.实验结果表明,文中提出的目标跟踪方法比经典粒子滤波目标跟踪方法具有更强的抗干扰性能和较高的跟踪精度. 相似文献
18.
利用单一特征在复杂环境下进行目标跟踪容易导致跟踪失败。针对该问题,提出基于多特征融合与均值偏移的粒子滤波跟踪算法。在粒子滤波的总体框架下,通过嵌入均值漂移聚类算法产生更逼近真实后验分布的粒子,同时采用颜色和结构特征作为观测模型来表示目标,利用融合后的信息计算粒子的权值,并在跟踪过程中不断更新,以减小跟踪偏差。实验结果表明,与基于颜色与结构的跟踪算法相比,该算法在使用相同粒子数目时鲁棒性更高,而且粒子的平均权重得到了提高,重采样次数明显减少,即使在粒子数目较少的情况下也能实现稳定跟踪。 相似文献