首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gelatin microparticles containing propolis ethanolic extractive solution were prepared by spray-drying technique. Particles with regular morphology, mean diameter ranging of 2.27 μm to 2.48 μm, and good entrapment efficiency for propolis were obtained. The in vitro antimicrobial activity of microparticles was evaluated against microorganisms of oral importance (Enterococcus faecalis, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus mitis, Streptococcus mutans, Streptococcus sobrinus, Candida albicans, and Lactobacillus casei). The utilized techniques were diffusion in agar and determination of minimum inhibitory concentration. The choice of the method to evaluate the antimicrobial activity of microparticles showed be very important. The microparticles displayed activity against all tested strains of similar way to the propolis, showing greater activity against the strains of E. salivarius, S. sanguinis, S. mitis, and C. albicans.  相似文献   

2.
This study investigated the antibacterial effect of a resin composite matrix with or without incorporated triclosan (0.3 wt%) on Streptococcus mutans, Actinomyces viscosus and Lactobacillus casei. In the quantitative assay, bacterial suspensions were filled into 20-μl cavities within temporary restorative resins. After 0, 4, 8, 12, 24 and 48 h of incubation, the suspensions were removed from the restoratives and the numbers of viable bacteria were determined. Bacterial suspensions incubated without restoratives served as the controls. Ten replicates were carried out for each experiment. The resin composite containing triclosan demonstrated variable degrees of antibacterial activity against the microorganisms, revealing a significant inhibitory effect on S. mutans within 12 h compared to the control. The viable counts of A. viscosus significantly decreased after 24 h. A significant reduction of L. casei was observed after 48 h. The unloaded resin composite did not reveal a marked antibacterial effect. The resin composite loaded with triclosan might be beneficial in preventing cavity contamination and minimizing the risk of pulpal irritation in the short-term.  相似文献   

3.
In this study, a natural polymer, chitosan (CS) has been converted through modified procedures to produce a water-soluble nontoxic form that has been evaluated as a novel potential antitumor drug. CS was carboxymethylated and then further modified in mild aqueous medium via graft copolymerization using a new simple and reproducible method. The synthesized new derivative of carboxymethylated CS (DCMC) was fully characterized by numerous techniques including Fourier transform infrared spectroscopy (FT-IR), elemental analyzer (EA), scanning electron microscopy (SEM), two-dimensional wide-angle X-ray scattering (2D-WAXS), and differential scanning calorimetry (DSC). The anticancer activity of the DCMC was investigated using mice bearing Ehrlich ascites tumor cells (EAC) at different doses dissolved in isotonic saline. It has been found that treatment with DCMC significantly inhibited tumor growth in a dose-dependent manner. To better understand the molecular mechanism explaining the DCMC effect on cancer cells, we tested the response of EAC cells in vivo to DCMC using flow cytometry cell cycle analysis. The cell cycle analysis revealed a G?/M phase accumulation as well as a significant increase in sub-G? phase cells after treatment with DCMC. This indicates an induction of apoptosis in EAC cells associated with a highly significant decrease in tumor volume. In general, our results indicated that the DCMC is a regulator of tumor cell growth and differentiation not only by causing G?/M cell cycle arrest but also inducing their apoptotic death. Moreover, the estimated hematological profile such as hemoglobin, RBCs, as well as WBCs counts revealed normal levels in mice treated with DCMC, indicating the possibility of using the DCMC in cancer chemotherapy without causing anemia like other drugs. Biochemical assays also revealed that treatment with DCMC has led to an augmentation of the antioxidant defense system without affecting lipid peroxidation in EAC-bearing mice.  相似文献   

4.
In this study, a natural polymer, chitosan (CS) has been converted through modified procedures to produce a water-soluble nontoxic form that has been evaluated as a novel potential antitumor drug. CS was carboxymethylated and then further modified in mild aqueous medium via graft copolymerization using a new simple and reproducible method. The synthesized new derivative of carboxymethylated CS (DCMC) was fully characterized by numerous techniques including Fourier transform infrared spectroscopy (FT-IR), elemental analyzer (EA), scanning electron microscopy (SEM), two-dimensional wide-angle X-ray scattering (2D-WAXS), and differential scanning calorimetry (DSC). The anticancer activity of the DCMC was investigated using mice bearing Ehrlich ascites tumor cells (EAC) at different doses dissolved in isotonic saline. It has been found that treatment with DCMC significantly inhibited tumor growth in a dose-dependent manner. To better understand the molecular mechanism explaining the DCMC effect on cancer cells, we tested the response of EAC cells in vivo to DCMC using flow cytometry cell cycle analysis. The cell cycle analysis revealed a G2/M phase accumulation as well as a significant increase in sub-G1 phase cells after treatment with DCMC. This indicates an induction of apoptosis in EAC cells associated with a highly significant decrease in tumor volume. In general, our results indicated that the DCMC is a regulator of tumor cell growth and differentiation not only by causing G2/M cell cycle arrest but also inducing their apoptotic death. Moreover, the estimated hematological profile such as hemoglobin, RBCs, as well as WBCs counts revealed normal levels in mice treated with DCMC, indicating the possibility of using the DCMC in cancer chemotherapy without causing anemia like other drugs. Biochemical assays also revealed that treatment with DCMC has led to an augmentation of the antioxidant defense system without affecting lipid peroxidation in EAC-bearing mice.  相似文献   

5.
The aim of the present work was to estimate the bactericidal activity and efficacy of silver pre-treated clinoptilolite-rich tuff from Marsid (Romania) in solid media (agar plates) against Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus ATCC 25923. Two samples of natural clinoptilolite-rich tuff was first pre-treated with oxalic acid and sodium hydroxide solutions, respectively. The sample treated with oxalic acid was then exchanged with sodium chloride solution to obtain sodium form. Finally, both samples were exchanged with silver nitrate solution at room temperature for 24 h to obtain silver forms (P1-Ag+ and P2-Ag+) of clinoptilolite. The structure, morphology, and elemental composition of the pre-treated clinoptilolite samples were characterized by XRD, infrared (ATR-IR), SEM, and EDX analysis. The antibacterial activity was investigated by exposing E. coli and S. aureus in nutritive agar to the silver-clinoptilolite samples. Microorganisms were completely inhibited at 2 mg Ag+-clinoptilolite/mL nutritiv medium after 24 h of incubation at 37 °C. The silver-clinoptilolite sample derived from natural clinoptilolite pre-treated with oxalic acid (P1-Ag+) exhibit a stronger antibacterial effect in the presence of E. coli and the sample derived from natural clinoptilolite pre-treated with sodium hydroxide (P2-Ag+) in the presence of S. aureus.  相似文献   

6.
载铜多壁碳纳米管的抗菌活性研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在多壁碳纳米管(MWCNTs)表面负载纳米铜,制备复合抗菌材料MWCNTsCu。X射线能量色散谱(EDS)、透射电子显微镜(TEM)表征结果表明,纳米铜成功地负载在MWCNTs表面,纳米铜分散良好。以大肠杆菌为目标,评价了MWCNTs-Cu对水中细菌的抗菌活性,探讨了其抗菌机理。研究结果表明,MWCNTs-Cu对大肠杆菌表现出很强的抗菌性,其中,MWCNTs对大肠杆菌有强吸附性,纳米铜起主要杀菌作用。  相似文献   

7.
Bayberry tannin (BT), a typical plant polyphenol, was grafted on collagen fiber (CF) in different mass ratios. Subsequently, the BT-grafted CF (BT-CF) was used as carrier and stabilizer to prepare BT-CF stabilized silver nanoparticles (BT-CF-AgNPs). Scanning Electron Microscopy image of BT-CF-AgNPs showed that the BT-CF-AgNPs was in ordered fibrous state. X-ray Diffraction patterns and Transmission Electron Microscopy images offered evidence that the Ag nanoparticles were well dispersed on BT-CF. Fourier Transform-Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) investigations revealed that the Ag NPs were stabilized by the phenolic hydroxyls and quinones of BT on CF through electron donation/acception interaction. Antibacterial experiments demonstrated that BT-CF-AgNPs exhibited high antibacterial activity. When cell suspensions of Escherichia coli and Staphylococcus aureus (104–105 cfu/mL) were contacted with BT0.19-CF-AgNPs (mass ratio of BT to CF = 0.19, conc. of Ag = 8 μg/mL) at 310 K under constant shaking, the number of cells went down to zero within 2 h. In addition, the minimal inhibitory concentration of BT0.19-CF-AgNPs against Escherichia coli, Staphylococcus aureus, Penicillium glaucum and Saccharomyces cerevisiae was 2 μg/mL, 4 μg/mL, 6 μg/mL and 12 μg/mL Ag, respectively. During recycling use, the antibacterial activity of BT0.19-CF-AgNPs against Escherichia coli can last for 5 cycles. These facts suggest that BT-CF-AgNPs can be used as a new and effective antibacterial agent.  相似文献   

8.
Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 µm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.  相似文献   

9.
Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.  相似文献   

10.
Objective: This article aims to design low molecular weight chitosan (LMWC)-based conjugates of Rhein (RH) by means of an amino acid linker (Alanine) for improved solubility and enhanced bioavailability.

Significance: Rhein is a potential candidate for the therapy of kidney disease. However, the poor solubility, inadequate bioavailability, and lack of proper formulation restrict its clinical applicability. LMWC-drug conjugates offer the potential to improve the water-solubility of RH, increase its oral absorption, and thereby enhance its bioavailability.

Methods: The conjugates were synthesized via a carbodiimide reaction and confirmed using UV-vis, FTIR, and 1H-NMR spectroscopy. The water-solubility and in vitro release properties were evaluated. Free RH and RH-LMWC conjugates were administered at an equivalent oral gavage dose of RH at 35?mg/kg for pharmacokinetic studies in Sprague Dawley rats.

Results: The conjugates with RH content of 9.65% were successfully synthesized and featured a satisfactory water-solubility of 9.73?mg/mL, which exhibited a sustained release pattern over 72?h, and the enzymes present may promote the degradation of the conjugate to increase the release of Rhein. Oral administration of RH-LMWC conjugates to rats led to seven-folds and 3.1-folds increase in the T1/2 and AUC0–∞, respectively, as compared to RH suspension.

Conclusion: The present work demonstrated that the RH-LMWC conjugates exhibited sustained release properties with outstanding oral bioavailability enhancements compared to administration of RH itself. Potentially, RH-LMWC conjugates may serve as a promising lead for developing a new platform for RH oral delivery.  相似文献   


11.
The present investigation aims for the synthesis of copper oxide nanoparticles (CuO NPs) using Nilgirianthus ciliatus plant extract. The obtained CuO NPs were characterised by X‐ray diffraction, Fourier transform infrared spectrum, ultraviolet–visible spectroscopy, photoluminescence, scanning electron microscopy and transmission electron microscopy analysis. Significant bacterial activity was manifested by CuO nanoparticles against both Gram‐positive (Staphylococcus aureus and Staphylococcus mutans) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The synthesised CuO NPs have good cytotoxicity against both human breast cancer cell line (MCF‐7) and lung cancer cell line (A549) with minimum cytotoxic effect on normal L929 (fibroblast) cell lines.Inspec keywords: microorganisms, ultraviolet spectra, nanomedicine, transmission electron microscopy, visible spectra, cellular biophysics, antibacterial activity, nanoparticles, X‐ray diffraction, lung, copper compounds, cancer, toxicology, biomedical materials, scanning electron microscopy, photoluminescence, Fourier transform infrared spectraOther keywords: antibacterial activity, anticancer activity, biosynthesised CuO nanoparticles, copper oxide nanoparticles, Nilgirianthus ciliatus plant, X‐ray diffraction, infrared spectrum, ultraviolet–visible spectroscopy, transmission electron microscopy analysis, bacterial activity, Gram‐negative bacteria, synthesised CuO NPs, human breast cancer cell line, Staphylococcus aureus, Staphylococcus mutans, CuO  相似文献   

12.
Antibacterial activity of copper monodispersed nanoparticles into sepiolite   总被引:1,自引:0,他引:1  
Copper monodispersed nanoparticles (2–5 nm) embedded into submicron particles of sepiolite (Mg8Si12O30(OH)4(H2O)4·8H2O), suitable to be used for biological applications have been obtained after a specific treatment and subsequent reduction process. Cu/Sepiolite particles have revealed as a strong bactericide (similar to Triclosan) so that they were able to decrease the starting microorganism concentrations of Staphylococcus aureus or Escherichia coli by 99.9%.  相似文献   

13.
ZnO powder with crystallographic orientation was prepared from the mixed aqueous solution of zinc chloride, tri-ethanol amine and thio-urea. From X-ray diffraction measurement, as-prepared powder was found to have the orientation along ab axes of hexagonal structure, and a needle-like shape with the aspect ratio of 5 was observed by scanning electron microscope, indicating that as-prepared powder had crystallographic orientation. In the tests of antibacterial activity by colony count method, ZnO powders with and without crystallographic orientation were used in present work. Survival ratio of bacteria decreased with increasing powder concentration, i.e., increase in antibacterial activity. The antibacterial activity in ZnO powder with crystallographic orientation was weaker than that in commercial ZnO powder without orientation at same powder concentration. Regarding specific surface area of the powders used in antibacterial tests, however, antibacterial activity in powder with orientation was found to be similar to that without orientation; that is, the crystallographic orientation of ZnO did not affect antibacterial activity. The activity toward Staphylococcus aureus was stronger than that toward Escherichia coli, irrespective of the kind of powders.  相似文献   

14.
Carbon nanoparticles (CNPs) are isolated from chimney soot and characterised by various tools such as X‐ray diffraction, scanning electron microscopy, transmission electron microscopy and ultraviolet–visible spectroscopy. The X‐ray diffraction studies confirm the presence of C60 nanoparticles in the isolated sample. The thermal properties of the prepared CNPs are recorded using thermogravimetric analysis and differential thermal analysis. The analysis of the antibacterial activity of the synthesised CNPs against selected Gram‐positive and Gram‐negative bacterial strains is also investigated. The systematic study confirms that CNPs collected from chimney soot exhibit good antibacterial potency against Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, and Proteus mirabilis.Inspec keywords: ultraviolet spectra, scanning electron microscopy, visible spectra, differential thermal analysis, thermal analysis, antibacterial activity, nanoparticles, X‐ray diffraction, nanofabrication, transmission electron microscopy, carbonOther keywords: chimney soot, transmission electron microscopy, ultraviolet–visible spectroscopy, thermal properties, thermogravimetric analysis, differential thermal analysis, antibacterial activity, carbon nanoparticles, X‐ray diffraction study, gram‐positive bacterial strains, gram‐negative bacterial strains, antibacterial potency, scanning electron microscopy, C60   相似文献   

15.
为研制出一种配方简单、性能良好的壳聚糖基伤口敷料,以壳聚糖为主体,采用冷冻干燥法制备了壳聚糖基多孔膜.通过单因素实验,探讨了不同配方和工艺条件下的成膜性、pH、吸水性和透气性能,并采用扫描电镜(SEM)、热重分析(TGA)对膜的结构和性能进行表征.通过实验得到最佳配方和工艺条件:3%的壳聚糖31.5mL,甘油3.5mL,羧甲基纤维素钠0.40g,碳酸氢钠0.1g,剧烈搅拌混匀,预冷冻7h后冷冻干燥.抑菌实验和降解实验表明,该多孔膜对大肠杆菌和金黄色葡萄球菌均有较强的抑菌作用,降解性能良好,是一种理想的伤口敷料.  相似文献   

16.
In this study, cupric oxide (CuO) nanoparticles were prepared using sonochemical method. The prepared nanoparticles were studied using X‐ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods. The colloidal chitosan (CS) solution was prepared using ultrasound irradiation method and simultaneously mixed with CuO nanoparticles. The coatings of colloidal solution with and without CuO nanoparticles were studied through TEM images. The cotton fabrics were separately soaked in the prepared nanoparticle‐containing (hybrid) solutions by sonication method followed by pad‐dry‐cure method. The structural, functional, and morphological analyses of the coated and uncoated fabrics were performed using XRD, FTIR‐attenuated total reflectance, and SEM analyses, respectively. The hybrid‐coated cotton fabrics showed better antibacterial activity against Staphylococcus aureus and Escherichia coli. The bioactivity performance of the coated fabrics was in the order of CuO‐coated fabric > CS‐coated fabric.Inspec keywords: cotton fabrics, nanoparticles, antibacterial activity, transmission electron microscopy, Fourier transform spectroscopy, infrared spectroscopy, scanning electron microscopy, copper compoundsOther keywords: antibacterial activity, hybrid chitosan‐cupric oxide nanoparticles, cotton fabric, cupric oxide nanoparticles, sonochemical method, X‐ray diffraction, XRD pattern, Fourier transform infrared spectroscopy, FTIR spectroscopy, scanning electron microscopy, SEM, transmission electron microscopy, TEM methods, colloidal chitosan solution, ultrasound irradiation method, colloidal solution, TEM images, cotton fabrics, nanoparticle‐containing solutions, sonication method, pad‐dry‐cure method, morphological analyses, structural analyses, functional analyses, FTIR‐attenuated total reflectance, SEM analyses, hybrid‐coated cotton fabrics, Staphylococcus aureus, Escherichia coli, bioactivity performance, CuO  相似文献   

17.
细菌感染引起的疾病问题在世界范围内引起广泛的关注。抗生素虽然能有效治疗细菌感染,但是不合理的使用及滥用会导致细菌产生耐药性。因此,解决细菌耐药性问题并研发出安全高效的非抗生素抗菌剂显得尤为迫切。通过在生物可降解型环交联型聚(环三膦腈-共-聚乙烯亚胺)微球(PHP)表面上接枝环氧丙基十二烷基二甲基氯化铵(DDEAC),成功制备了环交联型聚(环三膦腈-共-聚乙烯亚胺)接枝季铵盐微球(PHPD)。采用FTIR、XPS、TG、TEM和FESEM对微球的结构与形貌进行了表征分析,并研究了其抗菌活性和细胞毒性。实验结果表明,改性抗菌微球PHPD(50 μg/mL)对大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的抗菌率均达97.3%。复合材料克服了单独使用季铵盐DDEAC材料的高毒性缺陷,并且在实现高效抗菌的同时也具有很好的细胞相容性。因此,本研究对于开发安全高效的纳米抗菌剂具有一定的指导意义。   相似文献   

18.
The aim of this study was to understand the antibacterial activity of poloxamer-modified montmorillonite (MMT) clay and to elucidate its possible mechanism. Modified MMT clay was first examined for characterizations of morphology, composition, crystal structure, thermal behavior, and Fourier transform infrared (FTIR) and X-ray photoelectron spectrometry (XPS), exhibiting a weight fraction of approximately 24% of poloxamer, and mainly consisting of Ca, Mg, Al, Si, and O elements in the clay. Pathogenic Gram-negative bacteria, Escherichia coli (E. coli), were chosen as the antibacterial evaluation indicator of this clay by determining the minimum inhibitory concentration (MIC) in nutrient broth (NB). The amount of cations releasing into NB was also analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Poloxamer-modified MMT clay with a concentration of 2310 ppm was found to depress the growth of E. coli and exhibited a high calcium concentration of approximately 101 ppm releasing into NB. However, it was found that after being used once in the antibacterial test, the modified MMT clay did not retain any antibacterial activity in fresh NB; this is believed to be a result of the loss of poloxamer and decreased numbers of calcium ions incorporated into the used MMT clay, thus lowering bactericide induction, as indicated by the FTIR, XPS and ICP results.  相似文献   

19.
无机材料作为抗菌剂进入人们的视野以来,其材料特性与抗菌机理不断得到研究.无机抗菌材料主要分为金属离子型(如Ag、Cu、Zn等)与金属氧化物光催化型(如TiO2、ZnO等),将其制备成纳米级材料后,其由于比表面积增大,可以更好地吸附于微生物,获得更好的抗菌效果.同时,相比于有机抗菌材料和天然抗菌材料,无机抗菌材料具有毒性低、稳定性高、耐久性好、不容易引起细菌耐药性的优点.然而,近些年对无机抗菌材料抗菌机理的提出与研究缺乏系统的分析和论证,大部分研究人员仅对某一金属型抗菌材料提出该种材料的抗菌机理.银系抗菌材料的抗菌机理是无机抗菌材料中研究较为深入的,一般认为银系抗菌材料释放出Ag+,Ag+吸附于细菌表面,然后击穿细胞膜进入细胞内部与细胞内容物发生反应,最后导致细菌失活.而金属氧化物光催化型(如TiO2)抗菌材料由于其较宽的光学带隙在光照的条件下可发生光催化反应,从而产生大量如·OH、·O2-一类的自由基,当这些自由基与细胞接触时,与细胞内有机物反应,导致细菌失活.本文归纳了各种无机材料的抗菌机理研究方式及内容,并对其进行了总结分析,根据抗菌活性物质和作用对象将抗菌机理分为三类:直接接触型、溶出-渗透型和催化氧化型.目前的研究表明,三种抗菌机理往往共同存在,相互交错,对其机理分析仍不透彻,因此建议从分子生物学和基因层面,比如细胞修复、蛋白质转换等方面揭示抗菌机理.  相似文献   

20.
铜离子注入马氏体不锈钢的抗菌性能研究   总被引:5,自引:0,他引:5  
但智钢  倪红卫  许伯藩  熊娟  熊平源 《功能材料》2004,35(4):527-528,533
Cu离子由MEVVA离子注入机引出注入2Cr13不锈钢,采用60keV的能量、(0.2~2.0)×1017ions/cm2剂量。计算了60keV能量下Cu离子的饱和注入量。研究了2Cr13不锈钢在铜离子注入后所具有的抗菌性能,分析了注入量对样品抗菌性能的影响。抗菌实验结果表明,注入量接近饱和注入量时,样品具有最佳的抗菌性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号