首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-beam laser internal coaxial wire feeding cladding is regarded as a promising additive manufacturing technique because it is highly efficient and controllable.In this study,the effects of the defocus distance on cladding using a three-beam laser with internal wire feeding are experimentally and numerically studied.A process map indicating the surface characteristics at different defocus distances with various parameter combinations was developed.The transmission characteristics including laser intensity,beam size,and laser spot distance of the three-beam laser at different defocus distances were analyzed using TracePro software.Based on the TracePro results as heat source,a three-dimensional transient finite element (FE) thermal model was formulated to predict the thermal field,tempera-ture history and molten pool shape at different defocus distances.A molten pool with a flat bottom and low melting depth is generated when the defocus distance is-2.5 mm,whereas when this distance is-1.5 mm,a pool with a valley-shaped bond and high melting depth is formed.The simulated results of the temperature cycle and clad geometry are both validated and found to well agree with experimental measurements.The influence of the defocus distance on the microstructure and microhardness are discussed based on the temperature history and cooling rate.With the increase in the absolute defocus distance,the height and dilution of the clad decreased,whereas the width increased.In addition,the effects of defocus distance with various parameter combinations on clad geometry were explored using the formulated FE model.  相似文献   

2.
Laser micro sintering (LMS) is a promising technique for micro-additive manufacturing. During LMS of metallic powder, the material property variation and the heat input energy profile are important to understand physical phenomena involved. This paper presents a finite element temperature distribution profile in LMS of nickel powder on 304 stainless steel substrate. The simulation considered the transition of powder-to-dense sub-model which involves effective thermal conductivity, volumetric enthalpy, and absorptance change; and a moving volumetric Gaussian distribution heat source sub-model. It is found that, for a specified cross section, the mechanism of preheating the nickel powder changes for the heat source from previous laser-irradiated substrate region to molten nickel as the laser beam approaches, while the center of molten pool slice is slightly shifted toward the reverse direction of laser scanning when the laser moves away due to the thermal accumulation effect. Simulated sintered widths showed very good agreement with experimental measurement, and relative prediction errors are below 16 % within the process window.  相似文献   

3.
综合考虑热传导、热辐射和热对流及变热物性参数,基于ANSYS平台建立了连续移动的三维瞬态金属粉末直接激光烧结温度场的有限元模型;利用APDL参数化设计语言实现热源移动,利用焓处理相变潜热的影响,对水雾化铁粉的烧结成型温度场进行了模拟,系统分析了激光熔池的加热和冷却规律及温度场随时间的变化规律。模拟结果表明:随着时间的增加,由于热积累效应使得激光熔池的温度越来越高;彗星状温度云图的最高温度并不在激光光斑中心而是稍微滞后;模拟结果显示烧结过程中将产生液相,这与先前的实验结果吻合较好。  相似文献   

4.
等离子激光复合熔积高温合金粉末的工艺研究   总被引:4,自引:0,他引:4  
研究了等离子激光复合熔积高温合金粉末过程中激光对等离子弧柱形态、熔积时熔深和熔宽等的影响。实验结果表明,激光作用于等离子弧后,等离子弧弧柱的直径变小,挺度增加,稳定性增强,起弧容易,熔积层的熔深增大,熔宽减小。实验证明,这种方法直接快速成形高温合金或者难加工材料零件是可行的。  相似文献   

5.
选择性激光熔化成形瞬态温度场数值模拟   总被引:1,自引:0,他引:1  
为揭示选择性激光熔化成形的机理,初步建立了其熔化过程的传热理论模型;考虑温度变化对材料热物性参数的影响,利用ANSYS参数化设计语言(APDL)建立了有限元数值模型并进行了温度场求解.计算结果显示:熔化成形过程中温度场等值线呈椭圆状,已凝固部分在光斑再次扫描至邻近部位和上层粉末时由于热传导作用而发生重熔;熔池的尺寸大小随吸收能量的增加而逐渐增大,由初始宽约0.2mm增至0.25mm左右;温度场分布均匀、温度梯度小可减小零件的翘曲变形;基板温度随时间的推移而逐渐升高.  相似文献   

6.
利用旋转Gauss曲面体新型热源模型,忽略深熔激光焊时小孔对传热的影响,建立了移动激光热源作用下的三维数学模型.利用PHOENICS3.4软件,模拟了SUS304不锈钢深熔激光焊接热过程的温度场和熔池熔合线形状,得到了不同焊接速度下的温度场分布云图和"钉头"状的熔池形状.数值模拟结果与试验结果基本吻合.  相似文献   

7.
The working principle of the laser-aided direct metal tooling(DMT) process is the use of a laser to selectively clad metallic powder on the substrate material part. A high-powered laser beam is focused on a metal substrate to create a molten weld pool; as the laser passes by the deposit is quickly cooled, leaving behind a thin line of metal clad. The major advantage of the DMT process is its capability of depositing a multitude of materials. Since the material deposition relies only on the feeding of a powder, it is relatively simple to use multiple kinds of materials. In fact, recent research has shown that DMT is capable of manufacturing binary functionally graded materials as well. The study is to develop a software support tool, visual simulation technique, as one of the e-manufacturing capability established for a unique DMT process.  相似文献   

8.
Powder transport ratio is defined as the mass ratio of powder particles fed into the molten pool to all powders transported in the process of laser cladding by lateral powder feeding. According to the law of mass conservation and kinematic equation in physics, a powder transport model for flow field with cylindrical distribution and a mathematical expression of powder transport ratio are proposed. For different process parameters, the cross-sectional area of the clad layer is calculated by the model. Theoretical and experimental results are compared. The variation tendency of the theoretical cross-sectional area agrees well with the experimental results. The results indicate that the powder transport model can be used for fundamental research of real powder flow field.  相似文献   

9.
Multilayer direct laser metal deposition is a fabrication process in which the parts are fabricated by creating a molten pool into which metal powder particles are injected, and a layer is laid down by moving the pool. Height is added by creating additional layers on top of the first layer. During fabrication, a complex thermal history is experienced in different regions of the build. The thermal history includes the reheating process for previously deposited layers caused by subsequently deposited layers. The objective of this study is to provide insight into the thermal history during the direct laser deposition process. Using the commercial ABAQUS/CAE software, a thermomechanical 3D finite element model was developed. This work presents a 3D heat transfer model that considers the continuous addition of powder particles in the front of a moving laser beam using ABAQUS/CAE software. The model assumes the deposit geometry appropriate to each experimental condition and calculates temperature distribution, cooling rates, and remelted layer depth which can affect the final microstructure. Model simulations were qualitatively compared with experiments results acquired in situ using a K-type thermocouple.  相似文献   

10.
To discuss the influence of thin-walled blade??s curvature change and accumulating layer number on the temperature field distribution in laser direct metal deposition and obtain a uniform thickness of a thin-walled blade, the temperature field distribution was calculated by numerical simulation. The thin-walled blade??s curvature change and accumulating layer number can be studied, respectively. The effect of accumulating layer number on temperature field distribution was studied by thin wall; the effect of curvature change on temperature distribution was investigated by thin-walled rings with different curvatures. The numerical results show that the molten pool temperature of the thin wall increases with the layer number, and the molten pool temperature of thin-walled ring increases with the its curvature. The rules of laser power changing with the layer number and curvature in the processing of the thin-walled blade can be obtained by simulation when keeping molten pool temperature stable. According to the numerical results, the thin-walled blades were fabricated by experiments. The experimental results show that the laser power should be changed with the layer number and curvature if a uniform thickness of the blade can be obtained, which is in agreement with the numerical simulation.  相似文献   

11.
The investigation of transient temperature profiles of a weld joint produced by the laser welding process is presented. A three-dimensional finite element model is developed using a commercial finite element code ANSYS in order to obtain the behavior of temperature field and molten pool shape during the welding process. A three-dimensional conical Gaussian heat source is employed as a heat source model for performing a non-linear transient thermal analysis. The temperature-dependent material properties of AISI 304 stainless steel sheet are taken into account, which has a great influence on the temperature fields indicated by the simulation results. The effect of latent heat and the convective and radiative boundary conditions are also included in the model. A series of laser welds are performed using a 2-kW continuous wave Nd:YAG laser welding system. The experimental trials are conducted by varying the laser input parameters namely beam power, welding speed, and beam incident angle to validate the model. The results show that there is a good agreement between the finite element simulation and the experimental observations.  相似文献   

12.
A novel detection method of penetration status was presented for a high-power fiber laser welding. The metallic vapor and molten pool was recorded by a high-speed camera during welding process. The radiation intensity of metallic vapor, as well as the morphology of molten pool end, was calculated by image processing algorithm as image features. Four image features, the radiation intensity of metallic vapor (RIMV), the area of molten pool end (AMPE), the rear angle of molten pool end (RAMPE), and the aspect ratio of molten pool end (ARMPE), were extracted. The mean value, relative range, variation coefficient, and frequency ratio were computed for the four features to obtain the 16 characteristic parameters. Aiming at penetration status, the characteristic parameters were reorganized to form two complex indicators by the principal component analysis. Experimental results showed that the detection method was potential for online detection on the penetration status in a high-power laser welding process.  相似文献   

13.
The localized high-energy input and high-cooling rate inherent in the laser-based powder deposition (LBPD) process yield deposits with superior mechanical and metallurgical properties. However, these characteristics induce thermal stresses within the deposited material that subsequently lead to cracks. This tendency is predominant in the LBPD of metal–ceramic composite materials such as nickel (Ni) and tungsten carbide (WC). In this study, the thermal behavior of single and multilayered compositionally graded Ni-WC composite material during LBPD is studied using an experimentally verified three-dimensional finite element model. The model incorporates both directional- and temperature-dependent material properties. The effect of the mass fraction of the reinforcement, laser power, scanning speed, powder flow rate, and preheating temperature on temperature, temperature gradient, cooling rate, and molten pool evolution are investigated. The distribution and dissolution of WC in Ni-WC deposits are analyzed in the light of the scanning electron microscope, energy-dispersive spectroscopy, and microhardness distribution. The dissolution of WC in the molten Ni varies based on the mass fractions of the Ni and WC and the prevailing thermal conditions such as molten pool temperature and cooling rate. Experimental and numerical results confirm that the desired composition gradient can be achieved in a multilayered Ni-WC composite material deposit by adjusting the laser power. The developed heat transfer analysis may be used to select the suitable process variables needed to achieve the desired properties in the LBPD of single and multilayered Ni-WC composite material.  相似文献   

14.
Laser-engineered net shaping, referred to as LENSTM process, is an additive manufacturing technique for building metallic parts, layer by layer, by direct deposition of metal powders in a melt pool created by a focused laser beam. The process involves rapid melting and solidification of a controlled amount of injected metal powders as a laser beam scans over each layer building the structure from the bottom to the top. Due to its unique capability to deposit precise amounts of powder material at a desired location, the LENSTM process finds potential application in rapid tooling, prototyping, precision repair work, and manufacture of complex, intricate components with varying compositions. The peak temperature and thermal cycle experienced by each layer influence the final mechanical properties and dimensional accuracy of the part. An understanding and quantitative knowledge of the peak temperature, melt pool dimensions, and thermal cycles experienced in the deposited layers are essential for a priori selection of the process parameters in LENSTM technique. It is important to ensure that the deposited layers have the desired dimensions, good interlayer bonding, and requisite mechanical properties. In an attempt to understand the process parameters to be used in achieving the desired nature of deposition, a three-dimensional model is developed based on finite element method to numerically simulate heat transfer phenomenon in LENSTM process considering deposition of SS316 powders on a substrate of the same material. The computed temperature profiles are first validated with experimental results reported in the literature. The influence of process parameters on peak temperature, thermal cycles, and melt pool dimensions are studied subsequently. The continuous movement of laser and synchronized activation of elements depicting addition of powder particles are incorporated through an externally written user subroutine and using the element deactivation and activation features in the commercial finite element software ABAQUS 6.7. A unique non-dimensional parameter specific to LENSTM process is defined considering the combined influence of process parameters and material properties. The non-dimensional parameter is further used to serve as a guideline for the selection of appropriate process parameters that can result in a steady melt pool dimension, thereby ensuring a target layer width with good interlayer bonding.  相似文献   

15.
A laser flash method developed for the measurement of thermal conductivity of solids was applied to liquids of low thermal conductivity. The sample liquid was sandwiched in between a small thin metal disk and a sample holder. When the laser beam is absorbed in the front surface of the metal disk, the temperature of the disk quickly rises about 2 K and heat then flows downwards through the sample liquid as one-dimensional heat flow. The thermal conductivity of liquid can be obtained from the temperature fall of the disk without employing any reference materials and also without measuring the thickness of the sample liquid layer. Thermal conductivities of water and toluene near room temperature were measured by this method with a mean deviation of 2.6%. This laser flash method may be applied to the measurement of the thermal conductivity of liquids such as molten salts at elevated temperatures.  相似文献   

16.
Selective electron beam melting of Ti-6Al-4V is a promising additive manufacturing process to produce complex parts layer-by-layer additively. The quality and dimensional accuracy of the produced parts depend on various process parameters and their interactions. In the present contribution, the lifetime, width and depth of the pools of molten powder material are analyzed for different beam powers, scan speeds and line energies in experiments and simulations. In the experiments, thin-walled structures are built with an ARCAM AB A2 selective electron beam melting machine and for the simulations a thermal finite element simulation tool is used, which is developed by the authors to simulate the temperature distribution in the selective electron beam melting process. The experimental and numerical results are compared and a good agreement is observed. The lifetime of the melt pool increases linearly with the line energy, whereby the melt pool dimensions show a nonlinear relation with the line energy.  相似文献   

17.
基于计算流体力学方法,考虑电弧力、碳化硅颗粒(SiCp)增强相与液态铝合金基体相之间的相互作用以及表面张力等因素,建立了Si Cp增强铝基复合材料钨极氩弧焊(TIG)电弧辅助熔滴沉积增材制造中的三维瞬态熔池行为数值模型,通过与堆积试样的横截面形貌、Si Cp分散状态实验结果对比,验证了熔池行为数值模型的有效性。通过数值模拟,揭示了堆积过程熔池峰值温度演变规律、熔滴冲击诱导的熔池动力学行为、熔池流态对Si C颗粒迁移行为的影响。结果表明,堆积过程涉及熔滴冲击、合并、铺展、熔池回弹4个阶段;冲击点附近出现重熔,熔滴冲击造成熔池中心区域产生明显的V字形凹陷,熔池边缘形成冠状隆起;在熔体拖拽力的作用下Si C颗粒更多的分布于堆积层两侧;熔滴冲击引起的熔池内局部高压以及熔池底部对流,抑制了Si C颗粒向熔池底部沉降。  相似文献   

18.
激光分布对抽运Nd:YVO4晶体热效应的影响   总被引:3,自引:0,他引:3  
以解析各向异性分析理论为基础,研究矩形横截面Nd:YVO4激光晶体受到超高斯分布LD端面抽运时,激光晶体温度场分布和晶体抽运面热形变分布。通过激光晶体工作特点分析,考虑了激光分布和激光光束半径变化,建立了符合激光晶体工作状态的热模型。利用各向异性介质热传导方程的一种新求解方法,得出了矩形截面Nd:YVO4晶体的温度场、端面热形变场的通解表达式。研究结果表明:当使用输出功率为15W半导体激光器(超高斯阶次为1)端面中心入射Nd:YVO4晶体(晶体掺钕离子质量分数为0.5%)时,在抽运端面中心获得243.8C最高温升和1.99m最大热形变量,与实验结果一致。这种方法可以应用到其它激光晶体热问题研究中,为有效解决激光系统热问题提供了理论依据。  相似文献   

19.
The aim of the present research is to discuss the effect of gap on plasma plume, keyhole, and molten pool dynamics during laser lap welding for T-joints. The authors observe plasma plume, keyhole opening, and molten pool images by high-speed camera in different gaps during CO2 laser overlap welding of T-joints. The results show that gap causes beam energy fluctuations in the keyhole and leads to the instability of welding process. In laser spot welding, zero-gap and small gap greatly affect the stability of plasma and keyhole, which causes the formation of cavities in the weld metal, while a proper gap can help prevent porosity formation. In laser continuous welding, the disruption and closure of front keyhole wall at the gap periodically changes with the gap, which causes the formation of plenty of porosities at the gap. The instability of keyhole is closely related to dynamics of plume and molten pool, which gives an insight into the mechanism of porosity formation during laser overlap welding.  相似文献   

20.
针对现有光外送粉宽带熔覆中金属粉末受热不均匀、光粉同轴耦合精度不高的问题,设计了一种光内送粉激光熔覆喷头。送粉装置位于激光熔覆喷头内部,四周被激光束包裹。为了实现在宽带激光束内部均匀地对熔池送粉,保证粉末受热均匀,粉末速度方向始终垂直于熔池,设计了一种分粉流道;应用FLUENT软件对粉束发散情况进行了数值分析,确定了出口粉管的间距尺寸;应用FLUENT软件对粉管内部流场进行分析,确定了装置内部分粉管路的尺寸,减少了出口处的紊流,达到了较佳的送粉效果。最后利用所研制的送粉装置进行了送粉实验,验证了其效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号