首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low-voltage fully differential, voltage-controlled transconductor is described. The proposed transconductor achieves a wide input/control voltage range, with a highly linear transconductance factor and truly fully differential output currents. The transconductor is used to implement a G/sub m/-C adaptive forward equalizer (FE) for a 125 Mbps wire line transceiver using digital core transistors with channel length of no more than double the feature size in a typical digital CMOS 180-nm process and supply voltage as low as 1.6 V. The adaptive FE enables IEEE 1394b transceivers to operate over UTP-5 cables for up to 100 m in length. The transconductor stage occupies 1945 /spl mu/m/sup 2/ and consumes an average power of 418 /spl mu/w at 125 Mbps and 1.8-V supply.  相似文献   

2.
A low-power energy-efficient adaptive analog front-end circuit is proposed and implemented for digital hearing-aid applications. It adopts the combined-gain-control (CGC) technique for accurate preamplification and the adaptive-SNR (ASNR) technique to improve dynamic range with low power consumption. The CGC technique combines an automatic gain control and an exponential gain control together to reduce power dissipation and to control both gain and threshold knee voltage. The ASNR technique changes the value of the signal-to-noise ratio (SNR) in accordance with input amplitude in order to minimize power consumption and to optimize the SNR by sensing an input signal. The proposed analog front-end circuit achieves 86-dB peak SNR in the case of third-order /spl Sigma//spl Delta/ modulator with 3.8-/spl mu/Vrms of input-referred noise voltage. It dissipates a minimum and maximum power of 59.4 and 74.7 /spl mu/W, respectively, at a single 0.9-V supply. The core area is 0.5 mm/sup 2/ in a 0.25-/spl mu/m standard CMOS technology.  相似文献   

3.
A 256/spl times/144-bit TCAM is designed in 0.18-/spl mu/m CMOS. The proposed TCAM cell uses 4T static storage for increased density. The proposed match-line (ML) sense scheme reduces power consumption by minimizing switching activity of search-lines and limiting voltage swing of MLs. The scheme achieves a match-time of 3 ns and operates at a minimum supply voltage of 1.2 V.  相似文献   

4.
A fully differential transimpedance amplifier has been designed and implemented in 0.18 /spl mu/m standard digital CMOS technology. The parallel feedback circuit topology is adopted to broaden the bandwidth. It can operate at 10 Gbit/s with the dynamic range from 25 /spl mu/A up to 2.5 mA. The power consumption is only 88 mW under 2 V supply voltage.  相似文献   

5.
A 2 V 1.8 GHz fully integrated CMOS dual-loop frequency synthesizer is designed in a standard 0.5 /spl mu/m digital CMOS process for wireless communication. The voltage-controlled oscillator (VCO) required for the low-frequency loop is designed using a ring-type VCO and achieves a tuning range of 89% from 356 to 931 MHz and a phase noise of -109.2 dBc/Hz at 600 kHz offset from 856 MHz. With an active chip area of 2000/spl times/1000 /spl mu/m/sup 2/ and at a 2 V supply voltage, the whole synthesizer achieves a tuning range from 1.8492 to 1.8698 GHz in 200 kHz steps with a measured phase noise of -112 dBc/Hz at 600 kHz offset from 1.86 GHz. The measured settling time is 128 /spl mu/s and the total power consumption is 95 mW.  相似文献   

6.
A microwatt frequency divider for the 2.5-GHz ISM band is proposed. This divider directly modulates the output in a ring oscillator by means of a switch and realizes low power consumption with low supply voltage and a wide locking range. It is fabricated using a five-layer-metal and 0.2-/spl mu/m-gate length CMOS process. The core size is 10.8/spl times/10.5 /spl mu/m/sup 2/, which is much smaller than that of a typical inductor-enhanced frequency divider. This divider operates with a supply voltage in the range from 1.8 to 0.7V, and attains minimum power consumption of 44 /spl mu/W, in which case the supply voltage is 0.7 V, the maximum operating frequency is 4.3 GHz, and the locking range is 2.3 GHz. A derivation of the frequency locking range of the divider is provided in the Appendix.  相似文献   

7.
CMOS bandgap voltage reference circuit for supply voltages down to 0.6 V   总被引:2,自引:0,他引:2  
Ytterdal  T. 《Electronics letters》2003,39(20):1427-1428
A CMOS bandgap voltage reference (BVR) circuit is proposed that operates at power supply voltages down to 0.6 V. The BVR is designed in a commercially available 0.13 /spl mu/m digital CMOS technology. No analogue process options are required.  相似文献   

8.
This paper presents a simultaneous bi-directional (SBD) 4-level I/O interface for high-speed DRAMs. The data rate of 4 Gb/s/pin was demonstrated using a 500-MHz clock generator and a full CMOS rail-to-rail power swing. The power consumed by the I/O circuit was measured to be 28 mW/pin, when connected to a 10-pF load, at a 1.8-V supply voltage. The transmitter uses a 4-level push-pull linear output driver and a 4-level automatic impedance controller, achieving the reduction of driver currents and the voltage margin as large as 200 mV. The receiver employs a hierarchical sampling scheme, wherein a differential amplifier selects three out of six reference voltage levels. This scheme ensures minimized sampling power and a wide common-mode sampling range. The 6-level reference voltage for sampling is generated by the combination of the transmitter replica. The proposed I/O interface circuits are fabricated using a 0.10-/spl mu/m, 2-metal layers DRAM process, and the active area is 330 /spl times/ 66 /spl mu/m/sup 2/. It exhibits 200 mV /spl times/ 690 ps eye windows on the given channel with a 1.8-V supply voltage.  相似文献   

9.
This paper presents a fully integrated 0.18-/spl mu/m CMOS Bluetooth transceiver. The chip consumes 33 mA in receive mode and 25 mA in transmit mode from a 3-V system supply. The receiver uses a low-IF (3-MHz) architecture, and the transmitter uses a direct modulation with ROM-based Gaussian low-pass filter and I/Q direct digital frequency synthesizer for high level of integration and low power consumption. A new frequency shift keying demodulator based on a delay-locked loop with a digital frequency offset canceller is proposed. The demodulator operates without harmonic distortion, handles up to /spl plusmn/160-kHz frequency offset, and consumes only 2 mA from a 1.8-V supply. The receiver dynamic range is from -78 dBm to -16 dBm at 0.1% bit-error rate, and the transmitter delivers a maximum of 0 dBm with 20-dB digital power control capability.  相似文献   

10.
This letter presents a 2-GHz SiGe heterojunction bipolar transistor fully integrated class E/F power amplifier (PA) design operating at low supply voltage. A maximum measured power added efficiency (PAE) of 39% is achieved for a supply voltage of 1.8V. At 1V, a maximum PAE of 36% is measured. The PA was fabricated using an advanced 0.18-/spl mu/m BiCMOS process.  相似文献   

11.
A low-voltage temperature sensor designed for MEMS power harvesting systems is fabricated. The core of the sensor is a bandgap voltage reference circuit operating with a supply voltage in the range 1-1.5 V. The prototype was fabricated on a conventional 0.5 /spl mu/m silicon-on-sapphire (SOS) process. The sensor design consumes 15 /spl mu/A of current at 1 V. The internal reference voltage is 550 mV. The temperature sensor has a digital square wave output the frequency of which is proportional to temperature. A linear model of the dependency of output frequency with temperature has a conversion factor of 1.6 kHz//spl deg/C. The output is also independent of supply voltage in the range 1-1.5 V. Measured results and targeted applications for the proposed circuit are reported.  相似文献   

12.
A low-power precomputation-based fully parallel content-addressable memory   总被引:1,自引:0,他引:1  
This paper presents a novel VLSI architecture for a fully parallel precomputation-based content-addressable memory (PB-CAM) with low-power, low-cost, and low-voltage features. This design is based on a precomputation approach that saves not only power consumption of the CAM system, but also reduces transistor count and operating voltage of the CAM cell. In addition, the proposed PB-CAM word structure adopts the static pseudo-nMOS circuit design to improve system performance. The whole design was fabricated with the TSMC 0.35-/spl mu/m single-poly quadruple-metal CMOS process. With a 128 words by 30 bits CAM size, the measurement results indicate that the proposed circuit works up to 100 MHz with power consumption of 33 mW at 3.3-V supply voltage and works up to 30 MHz under 1.5-V supply voltage.  相似文献   

13.
A low-power 22-bit incremental ADC   总被引:1,自引:0,他引:1  
This paper describes a low-power 22-bit incremental ADC, including an on-chip digital filter and a low-noise/low-drift oscillator, realized in a 0.6-/spl mu/m CMOS process. It incorporates a novel offset-cancellation scheme based on fractal sequences, a novel high-accuracy gain control circuit, and a novel reduced-complexity realization for the on-chip sinc filter. The measured output noise was 0.25 ppm (2.5 /spl mu/V/sub RMS/), the DC offset 2 /spl mu/V, the gain error 2 ppm, and the INL 4 ppm. The chip operates with a single 2.7-5 V supply, and draws only 120 /spl mu/A current during conversion.  相似文献   

14.
Low-power low-voltage reference using peaking current mirror circuit   总被引:4,自引:0,他引:4  
Cheng  M.-H. Wu  Z.-W. 《Electronics letters》2005,41(10):572-573
A low-power low-voltage bandgap reference using the peaking current mirror circuit with MOSFETs operated in the subthreshold region is presented. A demonstrative chip was fabricated in 0.35 /spl mu/m CMOS technology, achieving the minimum supply voltage 1.4 V, the reference voltage around 580 mV, the temperature coefficient 62 ppm//spl deg/C, the supplied current 2.3 /spl mu/A, and the power supply noise rejection ratio of -84 dB at 1 kHz.  相似文献   

15.
This work presents the design of an ultra-low-power self-biased 400-pA current source. We propose the use of a very simple topology along with a design methodology based on the concept of inversion level. An efficient design methodology has resulted in a cell area around 0.045 mm/sup 2/ in the AMI 1.5-/spl mu/m CMOS technology and power consumption around 2 nW for 1.2-V supply. Simulated and experimental results validate the design and show that the current source can operate at supply voltages down to 1.1 V with a good regulation (<6% /V variation of the supply voltage) in a 1.5-/spl mu/m technology.  相似文献   

16.
A new low-voltage CMOS Class AB/AB fully differential opamp with rail-to-rail input/output swing and supply voltage lower than two V/sub GS/ drops is presented. The scheme is based on combining floating-gate transistors and Class AB input and output stages. The op amp is characterized by low static power consumption and enhanced slew-rate. Moreover the proposed opamp does not suffer from typical reliability problems related to initial charge trapped in the floating-gate devices. Simulation and experimental results in 0.5-/spl mu/m CMOS technology verify the scheme operating with /spl plusmn/0.9-V supplies and close to rail-to-rail input and output swing.  相似文献   

17.
A monotonic digitally controlled delay element   总被引:2,自引:0,他引:2  
A monotonic digitally controlled delay element (DCDE) is implemented in the 0.18 /spl mu/m CMOS technology. In this paper, the design procedure of the new architecture and measurement results are reported. The delay of the DCDE changes monotonically with respect to the digital input vector. The monotonicity is one of the important features of this new architecture. Due to its monotonic behavior, the design of the DCDE is rather straightforward. The DCDE can be analyzed by a simple set of empirical equations with reasonable accuracy and can be made more tolerant to process, temperature, and supply voltage variations. The implemented delay element provides a delay resolution of as low as 2 ps and consumes 170 /spl mu/W to 340 /spl mu/W static power depending on the digital input vector.  相似文献   

18.
An integrated adaptive-output switching converter is presented. This converter adopts one-cycle control for fast line response and dual error correction loops for tight load regulation. A dc level shifting technique is proposed to eliminate the use of negative supply and reference voltages in the controller and make the design compatible with standard digital CMOS process. The design accommodates both continuous and discontinuous conduction operations. To further enhance the efficiency, dynamic loss control on the power transistors is proposed to minimize the sum of switching and conduction losses. The design can be extended to other dc-dc and ac-dc conversions. The prototype of the buck converter was fabricated with a standard 0.5-/spl mu/m digital CMOS process. Experimental results show that the converter is well regulated over an output range of 0.9-2.5 V, with a supply voltage of 3.3 V. The tracking speeds are 12.25 /spl mu/s/V for a 1.6-V step-up output change and 13.75 /spl mu/s/V for a 1.6-V step-down output change, respectively, which are much faster than existing counterparts. Maximum efficiency of 93.7% is achieved and high efficiency above 75% is retained over an output power ranging from 10 to 450 mW.  相似文献   

19.
In this paper, digital CMOS switched-current (SI) circuits with low charge-injection errors are presented. These circuits are based on the operation of the switches at virtual-ground nodes to result in signal-independent charge injection. Based on this scheme, different topologies for the memory cell are discussed. To verify the theoretical concepts developed, a third-order elliptic low-pass SI filter is implemented in a 0.25-/spl mu/m digital CMOS process. The filter nominally operates with a clock frequency of 10 MHz, cutoff frequency of 1 MHz, and a power supply of 2.3 V, while consuming 29 mW of power and processing input signals as large as 600-/spl mu/A peak differential. The low-charge injection nature of the circuit is reflected in its low total harmonic distortion of -59 dB for a 0.3-MHz signal with a modulation index of 0.5.  相似文献   

20.
Process and temperature compensation in a 7-MHz CMOS clock oscillator   总被引:1,自引:0,他引:1  
This paper reports on the design and characterization of a process, temperature and supply compensation technique for a 7-MHz clock oscillator in a 0.25-/spl mu/m, two-poly five-metal (2P5M) CMOS process. Measurements made across a temperature range of -40/spl deg/C to 125/spl deg/C and 94 samples collected over four fabrication runs indicate a worst case combined variation of /spl plusmn/2.6% (with process, temperature and supply). No trimming was performed on any of these samples. The oscillation frequencies of 95% of the samples were found to fall within /spl plusmn/0.5% of the mean frequency and the standard deviation was 9.3 kHz. The variation of frequency with power supply was /spl plusmn/0.31% for a supply voltage range of 2.4-2.75 V. The clock generator is based on a three-stage differential ring oscillator. The variation of the frequency of the oscillator with temperature and process has been discussed and an adaptive biasing scheme incorporating a unique combination of a process corner sensing scheme and a temperature compensating network is developed. The biasing circuit changes the control voltage of the differential ring oscillator to maintain a constant frequency. A comparator included at the output stage ensures rail-to-rail swing. The oscillator is intended to serve as a start-up clock for micro-controller applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号