首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
从废镍氢电池负极浸出液中回收稀土   总被引:1,自引:0,他引:1  
研究了从废旧镍氢电池负极浸出液中以硫酸盐复盐形式沉淀稀土。考察了无水Na2SO4加入量、溶液pH、温度和时间等对稀土回收率的影响。结果表明:在pH=1.5、无水Na2SO4与稀土硫酸盐的质量比3∶1、温度60℃、反应时间2 min、充分搅拌后静置30 s条件下,浸出液中各稀土元素的回收率均在91%以上,镍、钴损失率不到1%。  相似文献   

2.
废旧镍氢电池负极中含有大量的镍钴、稀土等有价元素,为实现电池负极中稀土元素浸出尽可能少,而镍钴元素最大程度浸出的目的,在废旧电池正极材料浸出实验的基础上,通过固定实验温度、浸出液硫酸初始浓度2个条件,研究了废旧镍氢电池负极高温硫酸浸出时液固比、氧化剂用量和浸出时间等因素的影响,找出了各因素最适应的浸出数值,得到了高镍钴浸出率和低稀土浸出率,达到了较为理想的效果.  相似文献   

3.
废旧镍氢电池正极浸出试验研究   总被引:4,自引:1,他引:4  
根据废镍氢电池正极组分构成特点,采用氧化一硫酸浸出法回收废旧镍氢二次电池正极残料中的镍和钻.实验确定了较为优化的浸出条件,钴的浸出率为99.2%,镍的浸出率为99.3%.  相似文献   

4.
废旧镍氢电池负极板中稀土的回收   总被引:1,自引:0,他引:1  
采用湿法冶金工艺,回收废旧镍氢电池负极板中的稀土(RE)元素,用硫酸浸出负极板中的有价金属,分析硫酸浓度、浸出温度、浸出时间等因素对稀土元素浸出率的影响,在硫酸浓度为2.0 mol/L、浸出温度为60℃、浸出时间120 min下,RE的浸出率为92.31%.采用磷酸二异辛酯(P204)为萃取剂萃取浸出液中的稀土,当P204在煤油中的比率为20%时,萃取率为92.86%.用硫酸钠沉淀溶液中的稀土,浸出液中稀土元素回收率可达98.78%.采用XRD和SEM分析表征回收的稀土氧化物的物相和表面形貌,结果表明,回收产物为铈系稀土氧化物,为立方晶系,呈面心立方结构,表面形貌为棱柱形.  相似文献   

5.
徐绍萍  李培良  耿朝青 《稀土》2004,25(5):15-16
以研究出一种价格低廉能满足生产镍氢电池用户基本要求,并适合产业化生产的低钴廉价储氢合金负极材料为目的,把合金中钴的含量从10%降到3.5%左右,从而把储氢合金原材料的成本降低15%~25%左右,合金粉的电化学循环寿命达到500次(容量大于初始容量的80%)以上,容量大于280mAh/g。  相似文献   

6.
用硫酸从废旧稀土荧光粉中浸出稀土   总被引:2,自引:0,他引:2  
研究了用硫酸浸出废旧稀土荧光灯中的稀土。结果表明:用硫酸浸出,稀土浸出率较高;提高浸出温度、增大硫酸浓度和加大搅拌速度,都有利于提高稀土浸出率。在反应温度37℃、搅拌转速250 r/min,固液质量体积比1∶50条件下,用2 mol/L硫酸溶液浸出废旧稀土荧光粉8 h,稀土Y、Eu、Tb和Ce的浸出率分别达到75.3%,71.5%,66.9%和61.1%,非稀土成分Al的浸出率仅为49.1%。  相似文献   

7.
废镍氢电池中镍、钴和稀土金属回收工艺研究   总被引:2,自引:1,他引:1  
介绍了湿法处理工艺对废镍氢电池中镍、钴、稀土(RE)金属的回收,考察了浸出时间、液固比、硫酸初始浓度及浸出温度等因素对镍、钴、稀土浸出率的影响;溶液pH、无水硫酸钠与浸出液中RE3+的摩尔比、反应温度等因素对稀土回收率的影响。通过正交试验确定了镍、钴、稀土在稀硫酸中的优化浸出条件以及产生稀土复盐沉淀的优化沉淀条件。实验结果表明,优化硫酸浸出条件为:浸出时间为3.8h,液固比为15,硫酸初始浓度为1.8mol·L-1,浸出温度80℃。在优化浸出条件下,镍的浸出率达96.8%,钴的浸出率达97.3%,稀土的浸出率达94.6%。稀土复盐的优化沉淀条件为:溶液pH为2.0,无水硫酸钠与浸出液中RE3+的摩尔比为4,反应温度为60℃。在此条件下,RE回收率为96.7%。  相似文献   

8.
以氯酸钠为氧化剂,采用常压氧化酸浸工艺从废旧镍基合金中浸出镍、钴,钨、钼、钽等稀贵元素富集在浸出渣中。结果表明,在下述最佳条件下,镍、钴的浸出率均可达到99%以上:粒度0.075~0.100mm、硫酸浓度4.5mol/L、液固比8∶1、氯酸钠用量2.0g(占合金废料的2%)、反应时间2.5h、反应温度(85±3)℃。  相似文献   

9.
10.
采用溶剂萃取的方法,对从废旧镍氢电池酸浸液中选择性提取稀土进行了探索。实验探索出合适的萃取体系,研究了料液初始pH值、萃取温度、混合强度、萃取时间、萃取相比等因素对萃取效果的影响,考察了反萃剂组成、浓度、反萃相比等因素对反萃效果的影响,并测出稀土的萃取等温线。在此基础上进行了工厂扩大试验,结果表明:经5级逆流萃取,稀土的萃取率可达99.99%。混合反萃液经草酸沉淀,得到的稀土纯度为98.49%,杂质金属含量均小于0.05%。所选萃取有机相对稀土有良好的选择性,可实现稀土与其他元素的分离。  相似文献   

11.
考察了萃取剂用量、萃取剂皂化率、相比、萃取时间及pH等因素对从镍氢电池正极酸浸液中萃取分离钴镍的影响。试验结果表明:以8%Cyanex272+92%煤油为萃取剂,在pH=5.0、有机相皂化率70%、Vo∶Va=1∶1、萃取时间3min、温度25℃条件下,钴萃取率达90%左右,Ni萃取率只有1%左右,二者分离效果较好,工艺运行稳定。  相似文献   

12.
It is discovered that the consistency of negative electrode is one of the main influences on battery performance, since the main raw material in negative electrode is metal hydride powder, ingredients, particle distribution and density of the powder could influence the pasting consistency in some aspects.With the study of MH powder characteristics, through the modification of the coating die, the consistency of negative electrode is improved efficiently.  相似文献   

13.
针对从废旧碱性锌锰电池极性材料酸浸锌时选择性差以及锌、锰分离困难等问题。研究了在N H3· H2 O体系和N H3· H2 O-(N H4)2 SO4体系中浸出锌。结果表明:在N H3· H2 O体系中,氨水质量分数为25%、液固体积质量比为15∶1、浸出时间40 min条件下,锌浸出率最高仅为45%;在 N H3· H2 O-(N H4)2 SO4体系中,氨水质量分数为25%、硫酸铵质量浓度为200 g/L、液固体积质量比为15∶1、浸出时间为20 min条件下,锌浸出率最高达96%。氨水中加入硫酸铵可以促进锌的选择性浸出。  相似文献   

14.
两段硫酸化焙烧-水浸从红土镍矿中回收镍钴   总被引:3,自引:1,他引:3       下载免费PDF全文
以澳大利亚某红土镍矿为原料,采用两段硫酸化焙烧—水浸工艺回收镍钴。重点探讨酸料比、低温焙烧段温度及时间、高温焙烧段温度及时间对镍钴浸出率的影响。结果表明,在酸料比为0.6,一段低温焙烧温度250℃,焙烧时间60min,二段高温焙烧温度650℃,焙烧时间3h的条件下进行硫酸化焙烧,焙烧产物经过水浸,Ni和Co浸出率分别达到93.38%和91.95%。  相似文献   

15.
稀土钨电极研究与应用   总被引:9,自引:0,他引:9  
介绍了近年对TIG(钨极惰性气体保护焊)和PLASMA(等离子体)焊接、切割用钨电极材料的研究进展和应用情况 ,着重对稀土钨电极材料及稀土氧化物作用等有关研究问题进行了讨论。对W -La2O3、W -CeO2、W -Y2O3 电极材料的热电子发射能力和稳定性研究表明 :在中小电流时2.2-wt%La2O3-W电极具有较好的电子发射能力和稳定性 ,钇钨和铈钨次之 ;在大电流工作时 ,钇钨电极热电子发射能力和稳定性最好。对制备的二元复合稀土钨电极(W -La2O3-Y2O3、W -La2O3-CeO2、W -Y2O3-CeO2)和三元稀土钨电极(W -La2O3-Y2O3-CeO2)的性能与单元稀土钨电极材料(W -La2O3、W -CeO2、W -Y2O3)和钍钨电极材料进行了比较。结果表明 ,复合稀土钨电极材料的焊接电弧性能优于单元稀土钨电极和钍钨电极。但它们的性能又各不相同 ,可适应交流焊、薄板和中厚板不同焊接工作的需求。研究表明、电极的使用性能强烈依赖于稀土金属氧化物。燃弧过程中它们的行为是影响电极使用性能、电极温度、逸出功和电极稳定性的最重要的因素。  相似文献   

16.
硫酸化氧化焙烧—水浸法从红土镍矿中提取镍钴   总被引:1,自引:0,他引:1       下载免费PDF全文
采用硫酸化氧化焙烧—水浸工艺从高铁低镁的红土镍矿中提取镍、钴,主要研究了硫酸用量、酸化氧化焙烧温度和时间、水浸时间、水浸液固比等因素对镍、钴浸出率的影响。结果表明,最佳工艺条件为:矿石粒度-1mm,按酸料比0.54在300℃焙烧1h再升至800℃焙烧2h,水浸液固比3∶1,水浸温度70℃,水浸时间2h,此时镍、钴浸出率分别达到91.00%和91.51%,铁浸出率仅为2.72%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号